

Previsione del rischio di ripresa

I risultati della ricerca nel carcinoma mammario metastatico nei fenotipi HR+/HER2negativo, triplo negativo, HER2-positivo e nelle donne portatrici di VP BRCA1-2

Alessandra Fabi

Medicina di Precisione in Senologia Fondazione Policlinico Universitario A. Gemelli IRCCS Roma

What more shocking change in metastatic BC?

ASCO Evolution

JOURNAL OF CLINICAL ONCOLOGY

2014: OT over CT

ASCO SPECIAL ARTICLE

Chemotherapy and Targeted Therapy for Women With Human Epidermal Growth Factor Receptor 2–Negative (or unknown) Advanced Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

Use of Biomarkers to Guide Decisions on Systemic Therapy for Women With Metastatic Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

Endocrine Treatment and Targeted Therapy for Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer: ASCO Guideline Update

Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update 2015: rebiopsy and testing ER PR HER2

2021: PIK3CA, BRCA, no ESR1

2022: PIK3CA, BRCA, NTRK, no ESR1, no PALB2 PDL1 MMR/MSI TMB in TNBC Having to Make a Selection

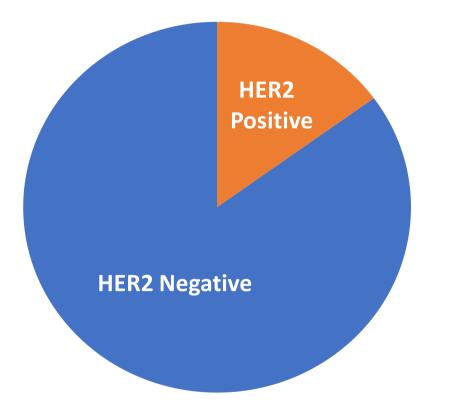
- HER2 Low The New Biomarker
- HER2 Resistence to IL CDK4/6i : this is the problem
- HER2 + The Perfect Storm
- HR-/HER2- no more Untargetable

How to follow disease?

Having to Make a Selection:

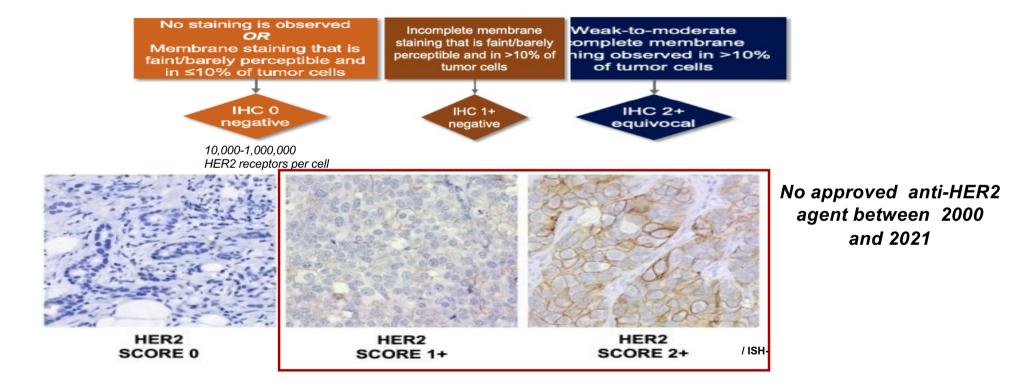
HER2 Low The New Biomarker

HER2 - Resistence to IL CDK4/6i : this is the problem

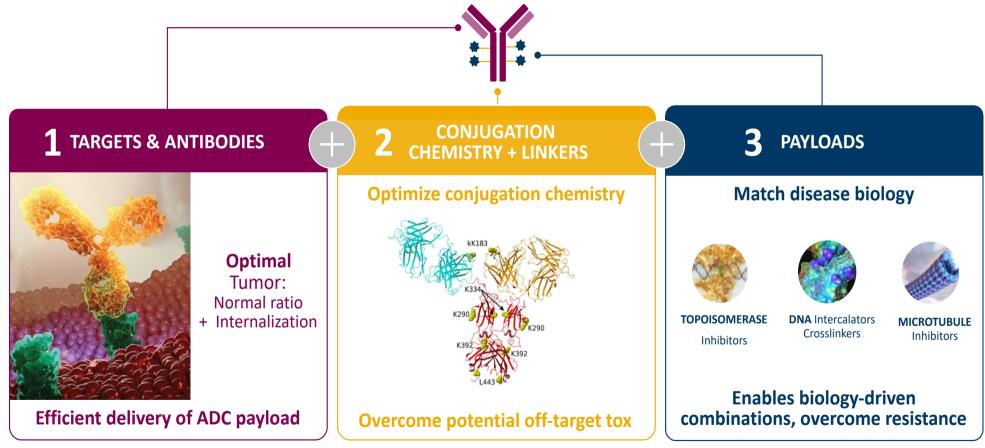

HER2 + The Perfect Storm

HR-/HER2- no more Untargetable

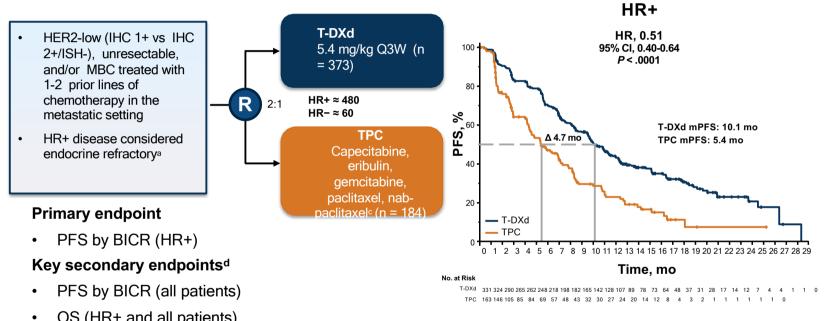
How to follow disease?


Traditional View of HER2-Positive Breast Cancer

• Tumors lacking *ERBB2* overexpression or amplification are collectively defined as HER2 negative

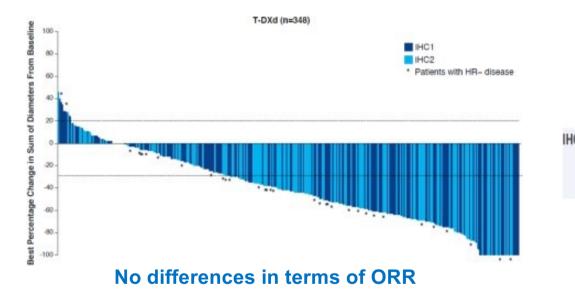

Wolff A et al. J Clin Oncol. 2018.

HER2 Negative: Composed of HER2-low & HER2 0



Marchiò C et al. Semin Cancer Biol. 2021

50 years in the making: Learning the right combinations for successful ADCs


DESTINY-Breast04: First Randomized Phase 3 Study of T-DXd vs Treatment of Physicians Choice for HER2-low MBC

OS (HR+ and all patients)

Modi S et al. ASCO 2022 Modi S et al. N Engl J Med. 2022.

Activity of T-DXd according to HER2 IHC levels from HER2-low

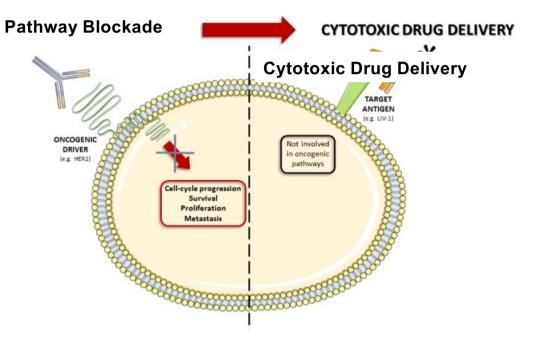
Hazard Ratio for Disease Progression or Death (95% CI)

Figure modified from supplemental material

No differences in terms of PFS

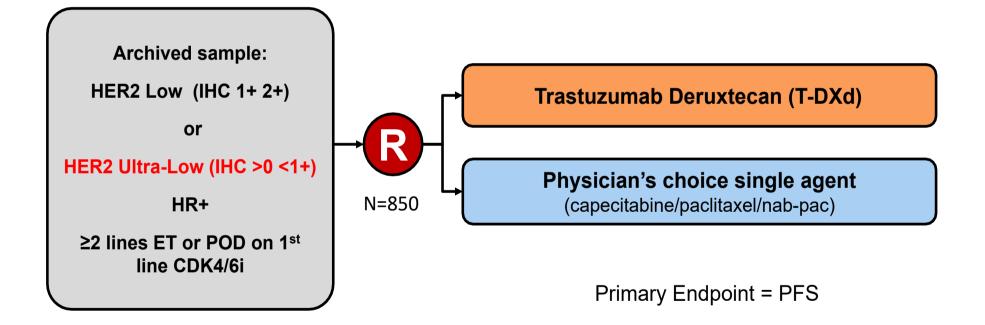
Modi et al. NEJM 2022

Activity of T-DXd according to HR status from HER2-low


	HR-positive		HR-negative	
	T-DXd	Control	T-DXd	Control
ORR	52.6%		50.0%	
PFS	10.1	5.4	8.5	2.9
	0.51		0.64	
OS	23.9	17.5	18.2	8.3
	0.46		0.48	

No differences in terms of ORR and PFS/OS Hazard Ratio

Modi et al. NEJM 2022


HER2 Low: Activity of HER-directed ADCs not likely related to blockade of an oncogenic driver

- No benefit with HER2-blockade
- Activity is not likely related to the blockade of an oncogenic pathway, but rather to the targeted delivery of a highly potent payload
- HER2-low not a new subtype characterized by an oncogenic driver, but is rather a biomarker for benefit to ADCs targeting HER2

Tarantino P et al. Expert Opin Biol Ther. 2020;20:1009-1024.

The Super DESTINY Breast-06: Chemotherapy-naïve, HR+, HER2 LOW or HER2 Ultra-Low MBC

Having to Make a Selection:

HER2 Low The New Biomarker

HER2 - Resistance to IL CDK4/6i : this is the problem

HER2 + The Perfect Storm

HR-/HER2- no more Untargetable

How to follow disease?

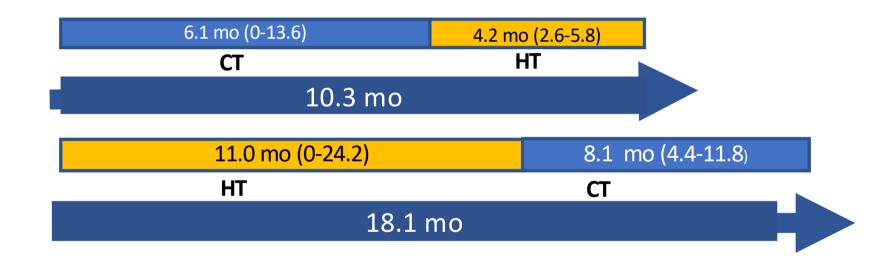
When do patients receive chemotherapy after CDK4/6i PD?

Table 2. First Subsequent Antineoplastic Therapy among Patients Who Discontinued the Trial Regimen.					
Variable	Ribociclib Group (N=335)	Placebo Group (N=337)			
No. of patients who discontinued the trial regimen	219	280			
Patients who received any subsequent therapy — no. (%)	151 (68.9)	205 (73.2)			
Chemotherapy alone	49 (22.4)	80 (28.6)			
Chemotherapy plus hormone therapy or other therapy*	18 (8.2)	22 (7.9)			
Hormone therapy alone	49 (22.4)	57 (20.4)			
Hormone therapy plus other therapy†	31 (14.2)	41 (14.6)			
Other	4 (1.8)	5 (1.8)			

.

.

. .

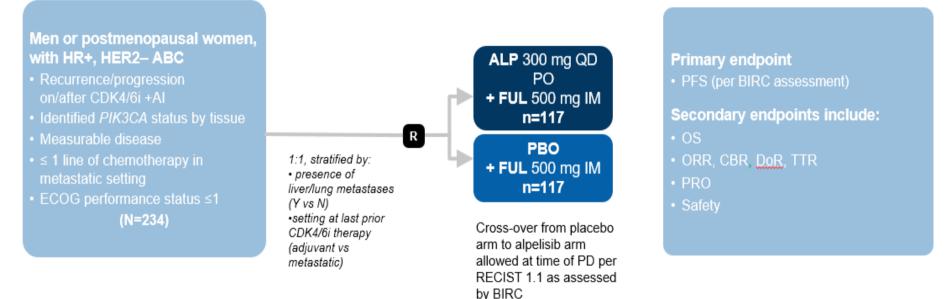

Im SA et al, NEJM 2019

.

.

Post-progression treatments after Palbociclib plus Endocrine Therapy in HR+/HER2-Metastatic Breast Cancer patients: which better choice?

RWE

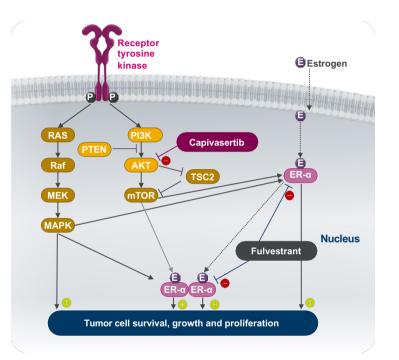

Fabi et al. Oncology 2021

Mutations in Breast Cancer

P53: 37% PI3K: 36% ➡ SOlar 1 study -> Alpelisib + FLV GATA: 11% MAP3K1: 8% MLL3: 7% MAP2K4: 4%

CGAN Network, Nature 2012;490:61

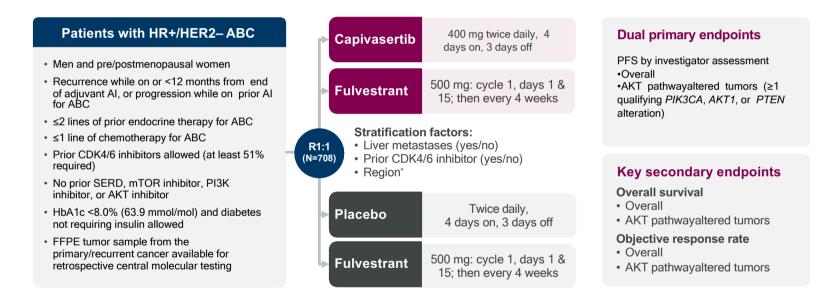
EPIKB5: Phase III trial of alpelisib + fulvestrant in HR+, HER2- advanced breast cancer with a PIK3CA mutation who progressed on or after AI and a CDK4/6 inhibitor



Sample size: 234 randomised patients (24m recruitment period); 162 PFS events will be required to detect a hazard ratio of 0.60 with 90% power, estimated that 162 PFS events will be observed 29 months after FPFV

But this is an ongoing Trial

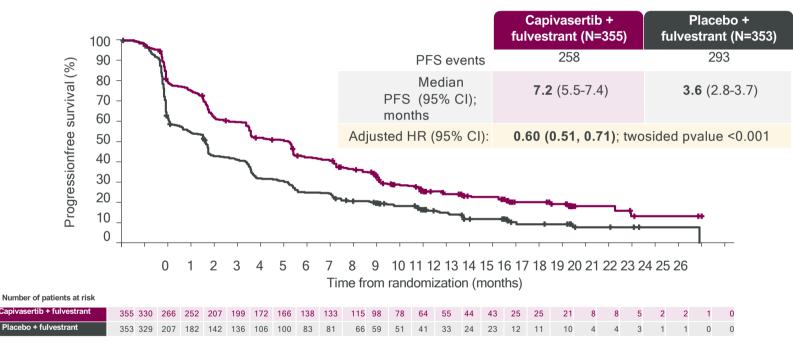
Overcoming Resistence to HT


- AKT pathway activation occurs in many HR+/HER2- ABC through alterations in *PIK3CA*, *AKT1 and PTEN*, but may also occur in cancers without those genetic alterations.^{1,2} AKT signalling is also implicated in the development of resistance to endocrine therapy²
- Capivasertib is a potent, selective inhibitor of all three AKT isoforms (AKT1/2/3)
- In the Phase II, placebocontrolled FAKTION trial³:
- The addition of capivasertib to fulvestrant significantly improved PFS and OS in postmenopausal women with Alresistant HR+/HER2- ABC in the overall population, with a more pronounced benefit in pathway altered tumours
- No patients had received prior CDK4/6 inhibitors

1. Millis et al. JAMA Oncol 2016;2:15651573; 2. Toss et al. Oncotarget. 2018;9:3160631619; 3. Howell et al. Lancet Oncol 2022;23:851-64. ABC, advanced breast cancer

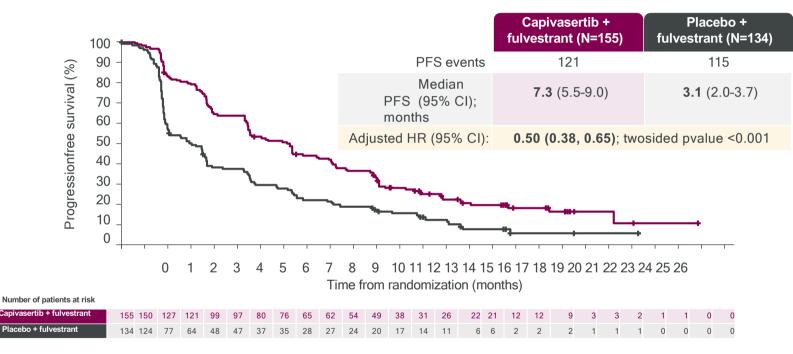
CAPItello291: Study overview

Phase III, randomized, double-blind, placebo-controlled study (NCT04305496)



HER2- was defined as IHC 0 or 1+, or IHC 2+/ISH- *Region 1: United States, Canada, Western Europe, Australia, and Israel, Region 2: Latin America, Eastern Europe and Russia vs Region 3: Asia. ABC, advanced (locally advanced [inoperable] or metastatic) breast cancer.

Pre or perimenopausal women also received a luteinizing hormonereleasing hormone agonist for the duration of the study treatment


This presentation is the intellectual property of the author/presenter. Contact them at nick.tumer@icr.ac.uk for permission to reprint and/or distribute.

Dualprimary endpoint: PFS in the overall population

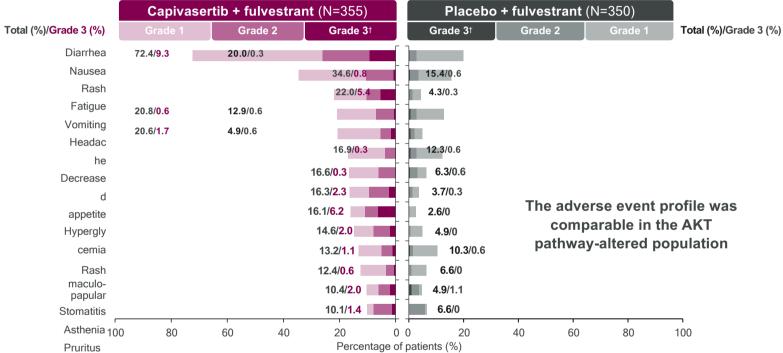
+ indicates a censored observation. HR was estimated using the Cox proportional hazard model stratified by the presence of liver metastases, prior use of CDK4/6 inhibitor, and geographic region. This presentation is the intellectual property of the author/presenter. Contact them at <u>nick.tumer@icr.ac.uk for</u> permission to reprint and/or distribute.

Dualprimary endpoint: Investigator assessed PFS in the AKT pathway altered population

+ indicates a censored observation. HR was estimated using the Cox proportional hazard model stratified by the presence of liver metastases and prior use of CDK4/6 inhibitor. This presentation is the intellectual property of the author/presenter. Contact them at <u>nick.turner@icr.ac.uk f</u>or permission to reprint and/or distribute.

Response per investigator assessment

	Overall population		AKT pathway-altered population	
	Capivasertib + fulvestrant	Placebo + fulvestrant	Capivasertib + fulvestrant	Placebo + fulvestrant
Patients with measurable disease at baseline	310	320	132	124
Objective response rate; n (%)	71 (22.9)	39 (12.2)	38 (28.8)	12 (9.7)
Odds ratio (95% CI)*	2.19 (1.42, 3.36)		3.93 (1.93, 8.04)	
Best objective response in all patients; n (%)	355	353	155	134
Complete response Partial response Stable disease (≥ 8 weeks) Progressive disease Non evaluable	4 (1.1) 68 (19.2) 187 (52.7) 83 (23.4) 13 (3.7)	1 (0.3) 38 (10.8) 152 (43.1) 149 (42.2) 13 (3.7)	3 (1.9) 35 (22.6) 84 (54.2) 31 (20.0) 2 (1.3)	0 12 (9.0) 55 (41.0) 62 (46.3) 5 (3.7)


As per the multiple testing procedure, formal comparison of ORR will only be conducted if overall survival is significant in both populations.

Objective response rates were assessed in patients with measurable disease at baseline.

*Analysis was performed using logistic regression adjusted for stratification factors. Odds ratio >1 favors capivasertib + fulvestrant.

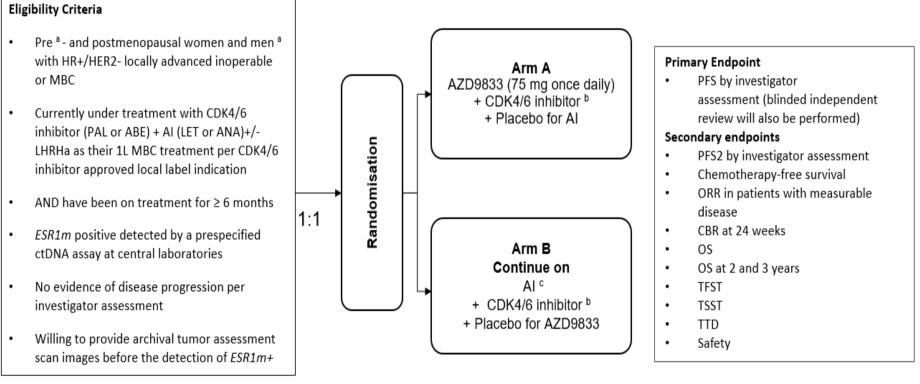
This presentation is the intellectual property of the author/presenter. Contact them at nick.turner@icr.ac.uk for permission to reprint and/or distribute.

Adverse events (>10% of patients) – overall population

Adverse events of any grade related to rash (group term including rash, rash macular, maculopapular rash, rash papular and rash pruritic) were reported in 38.0% of the patients in the capivasertib + fulvestrant arm (grade ≥3 in 12.1%) and in 7.1% of those in the place

This presentation is the intellectual property of the author/presenter. Contact them at nick.turner@icr.ac.uk_for permission to reprint and/or distribute.

Urinary


tract

infection

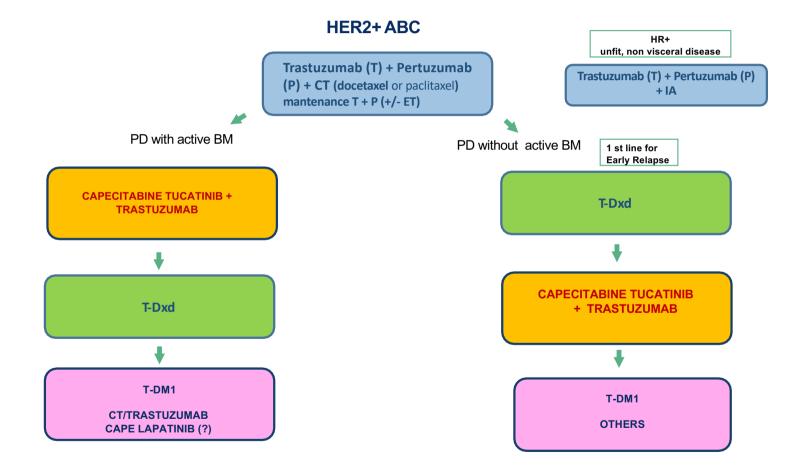
Liquid Biopsy for ctDNA ESR1m

SERENA 6

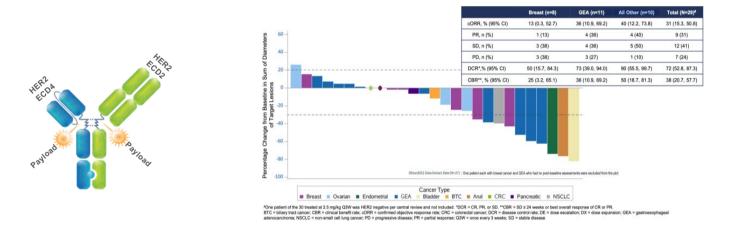
Ongoing study

N=300 patients

Having to Make a Selection:

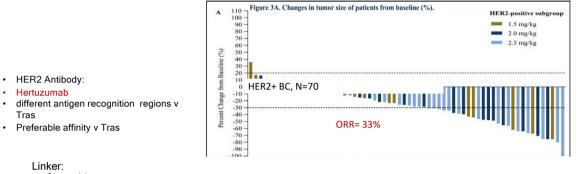

- HER2 Low The New Biomarker
- HER2 Resistance to IL CDK4/6i : this is the problem

HER2 + The Perfect Storm


HR-/HER2- no more Untargetable

How to follow disease?

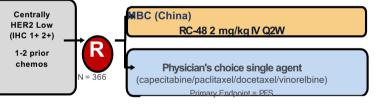
HER2 MBC: possible future treatment alghoritm


Zanidatamab Zovodotin (ZW49): Anti-HER2 Bispecific ADC

- Immunoglobulin 1-like antibody backbone directed against extracellular domain 4 (ECD4) & ECD2 of HER2
- Auristatin payload (tubulin targeting) covalently linked via a protease cleavable valine-citruline linker; (DAR) = 2
- Antibody-induced internalization with increased toxin-mediated cytotoxicity and immunogenic cell death

Jhaveri K et al, ESMO 2022

Disitamab Vedotin (RC-48): HER2 ADC for HER2+/Low BC


- Cleavable
- Bystander Effect

Payload: • MMAE

.

Randomized Phase 3 Study: RC48-ADC vs TPC for HER2-Low

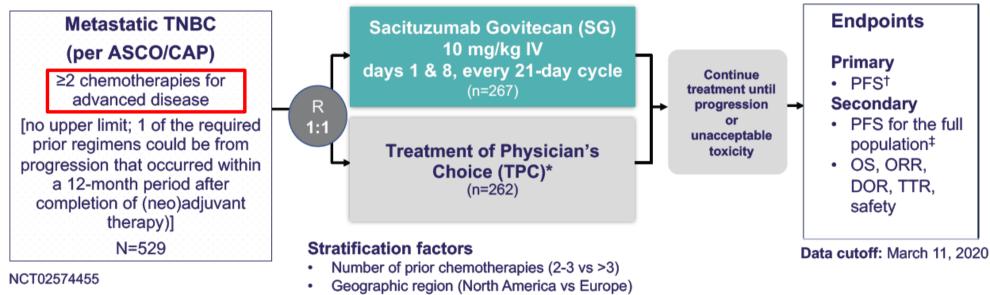
Wang J et al, ASCO 2021

Having to Make a Selection:

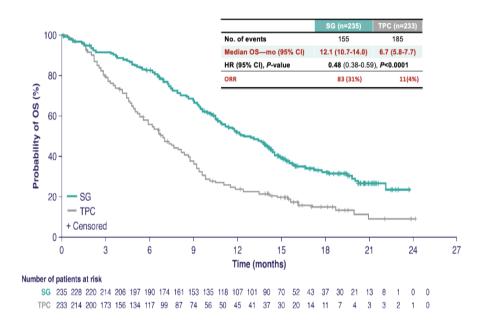
- HER2 Low The New Biomarker
- HER2 Resistance to IL CDK4/6i : this is the problem
- HER2 + The Perfect Storm
- HR-/HER2- No more Untargetable

How to follow disease?

Triple Negative......ER- PGR- HER2-


HER2 Classical and Actual Definition HER0, 1+, 2+ FISH/SISH NA

.....Looking for the Target !

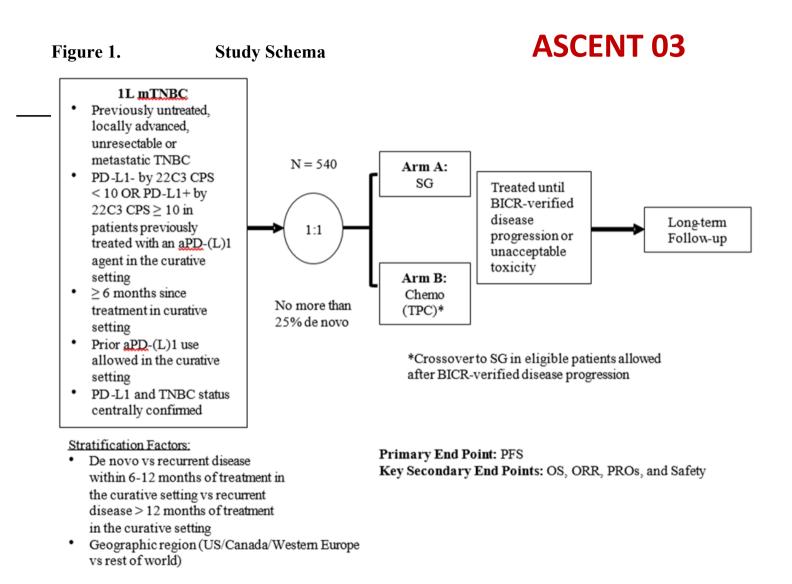

Phase 3 ASCENT Trial: Sacituzumab Govitecan vs TPC in mTNBC

Presence/absence of known brain metastases (yes/no)

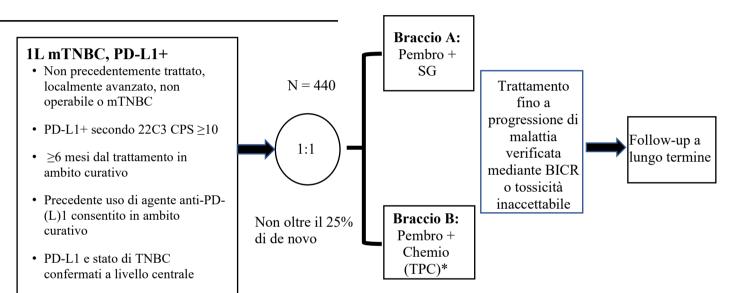
* TPC options: capecitabine, eribulin, gemcitabine, vinorelbine

ASCENT: Sacituzumab Associated With 52% Increase in OS!

Treatment-related discontinuation rates: Sacituzumab 4.7%, TPC 5.4%


TRAEs (All Grade, >20%; Grade 3/4, >5% of Patients)

			SG (n=258)			TPC (n=224)		
	TRAE*	All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %	
Hematologic	Neutropenia ⁺	63	46	17	43	27	13	
	Anemia [‡]	34	8	0	24	5	0	
	Leukopenia§	16	10	1	11	5	1	
	Febrile neutropenia	6	5	1	2	2	<1	
Gastrointestinal	Diarrhea	59	10	0	12	<1	0	
	Nausea	57	2	<1	26	<1	0	
	Vomiting	29	1	<1	10	5 2 <1 <1 <1 <1 5	0	
Other	Fatigue	45	3	0	30	5	0	
	Alopecia	46	0	0	16	0	0	


Sacituzumab approved for metastatic TNBC with at least one line of prior Tx

Bardia A, et al. N Engl J Med. 2021;384:1529-1541.

Final Amendment 1

ASCENT 04

*Crossover a SG per pazienti eleggibili consentito dopo la progressione verificata mediante BICR

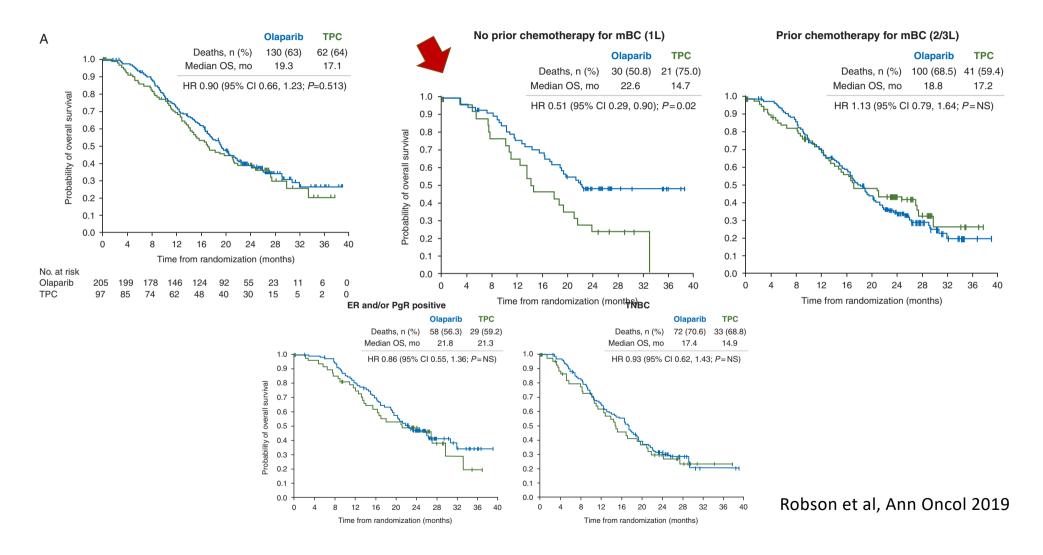
Fattori di stratificazione

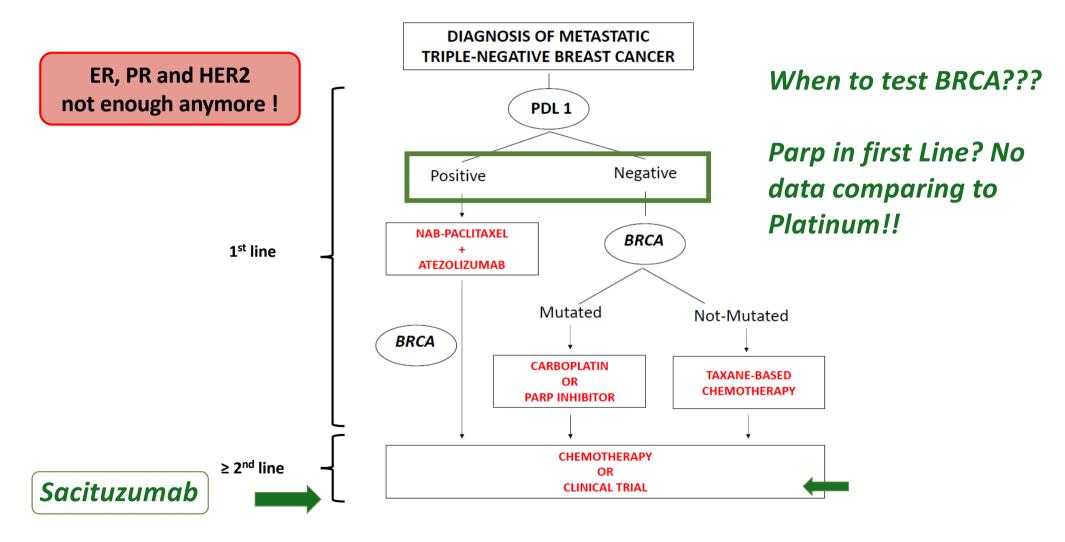
• Malattia de novo rispetto a recidivante tra i 6 e 12 mesi dal completamento del trattamento in ambito curativo rispetto a malattia recidivante che si manifesta >12 mesi dal completamento del trattamento in ambito curativo**

Endpoint primario: PFS in popolazione ITT **Principali endpoint secondari:** OS **Altri endpoint secondari:** ORR, PRO e sicurezza

OlympiAD: Phase III study of olaparib vs. TPC in gBRCAm HER2- mBC

Study design

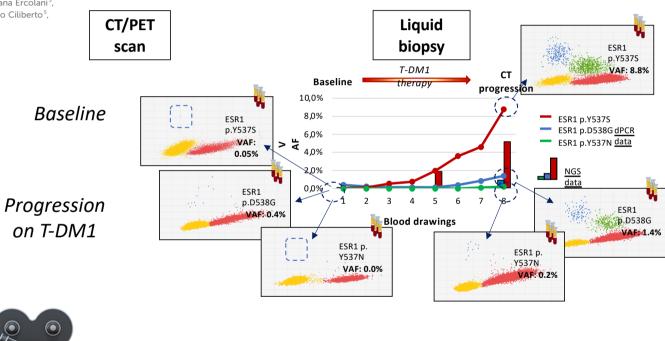

 At least one lesion that can be assessed by RECIST v1.1


Olaparib Chemotherapy 300 mg bd TPC Progression/deaths, n (%) 163 (79.5) 71 (73.2) Median PFS, months 7.0 4.2 **bFS (%)** \triangle 2.8 mos **HR 0.58** 95% CI 0.43 to 0.80; P=0.0009 12 14 16 18 20 22 24 26 28 Δ Time from randomization (months) At risk, n 205 177 154 107 Olaparib TPĊ

Primary endpoint: progression-free survival by BICR

The Aim of the Survival

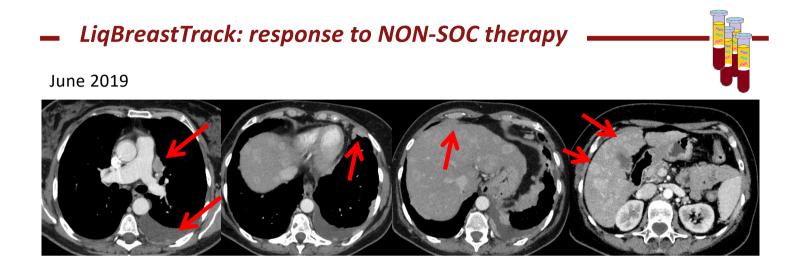
Secondo lo scenario terapeutico in evoluzione in TNBCalla luce di nuovi marcatori biologici e nuovi farmaci


Having to Make a Selection:

- HER2 Low The New Biomarker
- HER2 Resistance to IL CDK4/6i : this is the problem
- HER2 + The Perfect Storm
- HR-/HER2- No more Untargetable

How to follow disease?

Unusual phylogenetic tree and circulating actionable ESR1 mutations in an aggressive luminal/HER2-low breast cancer: Case report


Disclosure of Tumor Vulnerability The Tumor Movie

Matteo Allegretti¹, Vittoria Barberi², Cristiana Ercolani³, Antonello Vidiri⁴, Elena Giordani¹, Gennaro Ciliberto⁵, Patrizio Giacomini^{6*} and Alessandra Fabi⁷

The patient story from 2016 to 2020

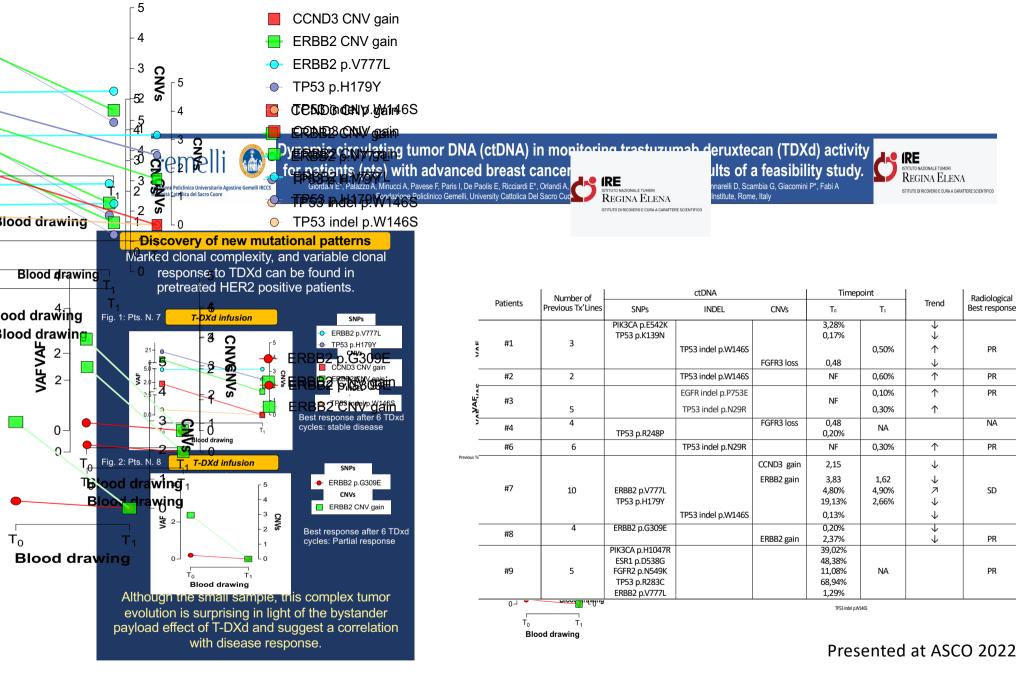
Front Oncol 2022

HER2+ (tissue) -> ESR1m (blood) : From the <u>Molecular Tumor Board:</u> anti HER2 targets to Fulvestrant LB anticipates the imaging outcome by about 3.5 months

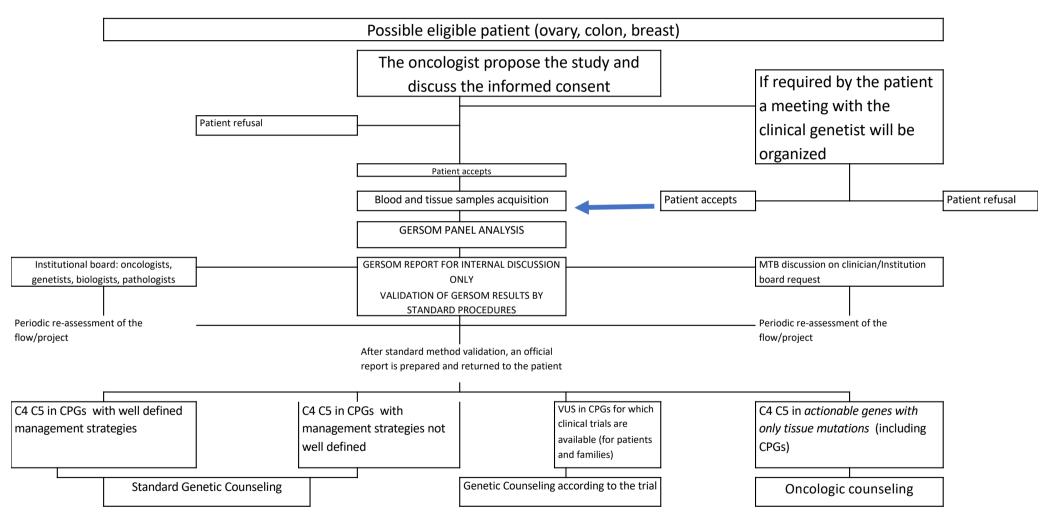
Liquid biopsy identifies actionable dynamic predictors of resistance to Trastuzumab Emtansine (T-DM1) in advanced HER2-positive breast cancer

Matteo Allegretti^{1†}, Alessandra Fabi^{2,3†}, Elena Giordani¹, Cristiana Ercolani⁴, Paolo Romania¹, Cecilia Nisticò², Simona Gasparro², Vittoria Barberi⁵, Maria Ciolina⁶, Edoardo Pescarmona⁴, Diana Giannarelli⁷, Gennaro Ciliberto⁸, Francesco Cognetti⁹ and Patrizio Giacomini^{1*}

Allegretti *et al. Mol Cancer* https://doi.org/10.1186/s12943-021-01438-z


Moving forward: from LiqBreasTrack to GIM21

PI	Center
Study Coordinator: A. Fabi	IRCSS Regina Elena/Policlinico Gemelli
Tondini C	Papa Giovanni XXIII Hospital
Moscetti L	Modena University Hospital
Del Mastro L	IRCSS San Martino IST
Marchetti P	Umberto I University Hospital
De Placido D	Federico II University
Gori S	Sacro Cuore – Don Calabria Hospital
Fabi A	IRCCS Policlinico Gemelli
Bria E	IRCCS Policlinico Gemelli


https://www.oncotech.org/gim21

Yesterday, Anne the Patients: Dr., how do we understand if there is an onset of disease ?

The Microscopic Disease

GERSOM Project (ACC) - The patient journey

Cosa la Profilazione Genica può Aggiungere alla Clinica

Anticipare.....

Approfondire.....

Prevedere.....

Donare.....

....e Sognare!!!!