

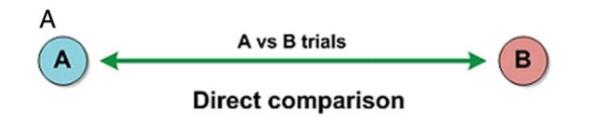
SCUOLA DI METODOLOGIA DELLA RICERCA CLINICA

I CONFRONTI INDIRETTI "IL MALATO E, DOPO DIO. Son Granne Califo and a state of the second s

NEGRAR DI VALPOLICELLA • 11 MAGGIO 2023

Centro Formazione IRCCS "Sacro Cuore - Don Calabria"

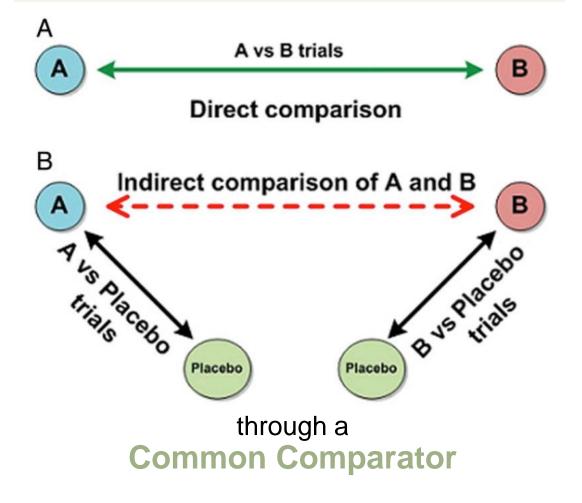
SCUOLA DI METODOLOGIA DELLA RICERCA CLINICA


2023 - 9ª EDIZIONE

MODULI SPECIALISTICI - S3

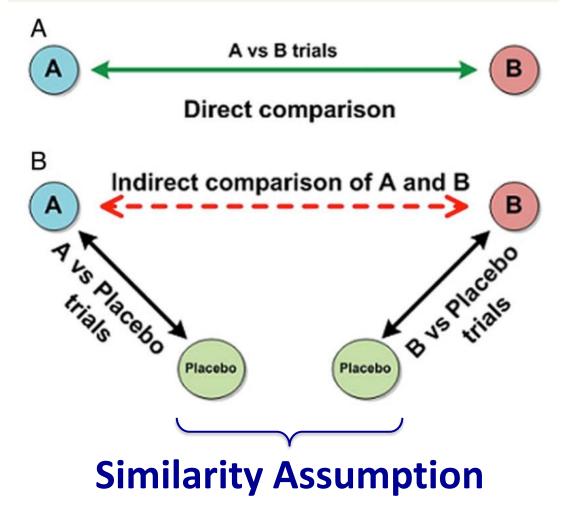
NEGRAR DI VALPOLICELLA • 11 MAGGIO 2023 Centro Formazione IRCCS "Sacro Cuore - Don Calabria"

Generalità e requisiti (G.L. Pappagallo)



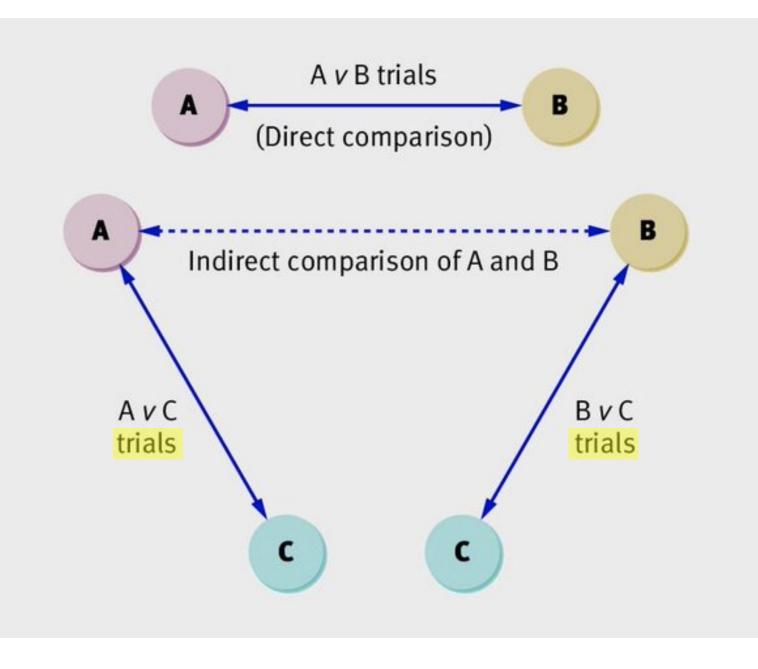
Indirect comparisons of competing interventions

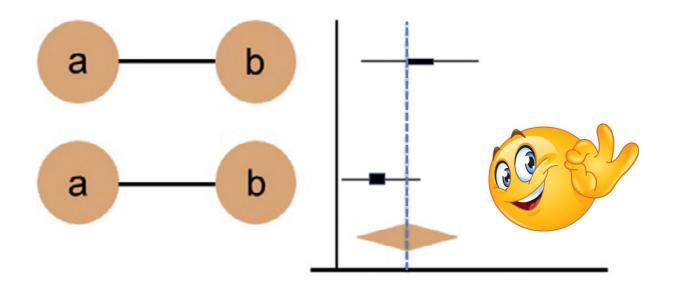
AM Glenny, ^{1*} DG Altman,² F Song,³ C Sakarovitch,² JJ Deeks,² R D'Amico,² M Bradburn² and AJ Eastwood⁴ *Health Technology Assessment* 2005; Vol. 9: No. 26

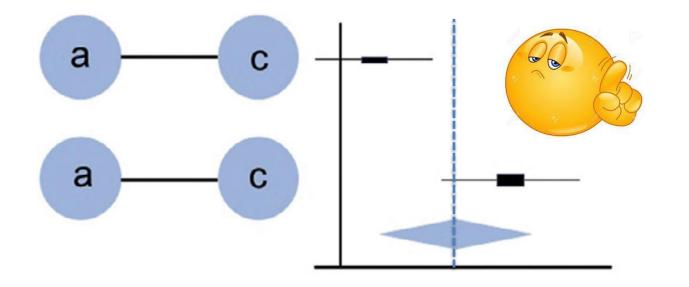


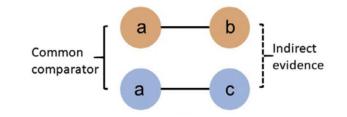
When conducting systematic reviews to evaluate the effectiveness of interventions, direct evidence from good-quality RCTs should be used wherever possible. If little or no such evidence exists, it may be necessary to look for indirect comparisons from RCTs. The reviewer needs, however, to be aware that the results may be susceptible to bias.

Indirect comparisons of competing interventions AM Glenny, ^{1*} DG Altman,² F Song,³ C Sakarovitch,² JJ Deeks,² R D'Amico,² M Bradburn² and AJ Eastwood⁴ Health Technology Assessment 2005; Vol. 9: No. 26

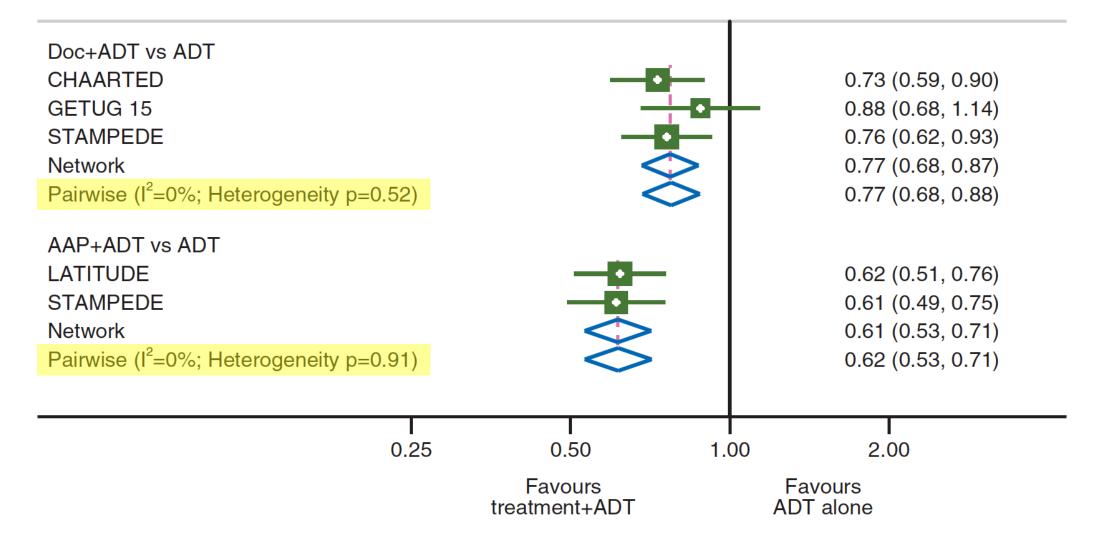

When conducting systematic reviews to evaluate the effectiveness of interventions, direct evidence from good-quality RCTs should be used wherever possible. If little or no such evidence exists, it may be necessary to look for indirect comparisons from RCTs. The reviewer needs, however, to be aware that the results may be susceptible to bias.


trials must be comparable on effect modifiers to obtain an unbiased pooled estimate.


Indirect comparisons of competing interventions AM Glenny, ^{1*} DG Altman,² F Song,³ C Sakarovitch,² JJ Deeks,² R D'Amico,² M Bradburn² and AJ Eastwood⁴ Health Technology Assessment 2005; Vol. 9: No. 26


When conducting systematic reviews to evaluate the effectiveness of interventions, direct evidence from good-quality RCTs should be used wherever possible. If little or no such evidence exists, it may be necessary to look for indirect comparisons from RCTs. The reviewer needs, however, to be aware that the results may be susceptible to bias.

Quando le evidenze dirette sono costituite da più trials...



Homogeneity Assumption

there must be no relevant heterogeneity between trial results in pairwise comparisons Treatment comparison and study

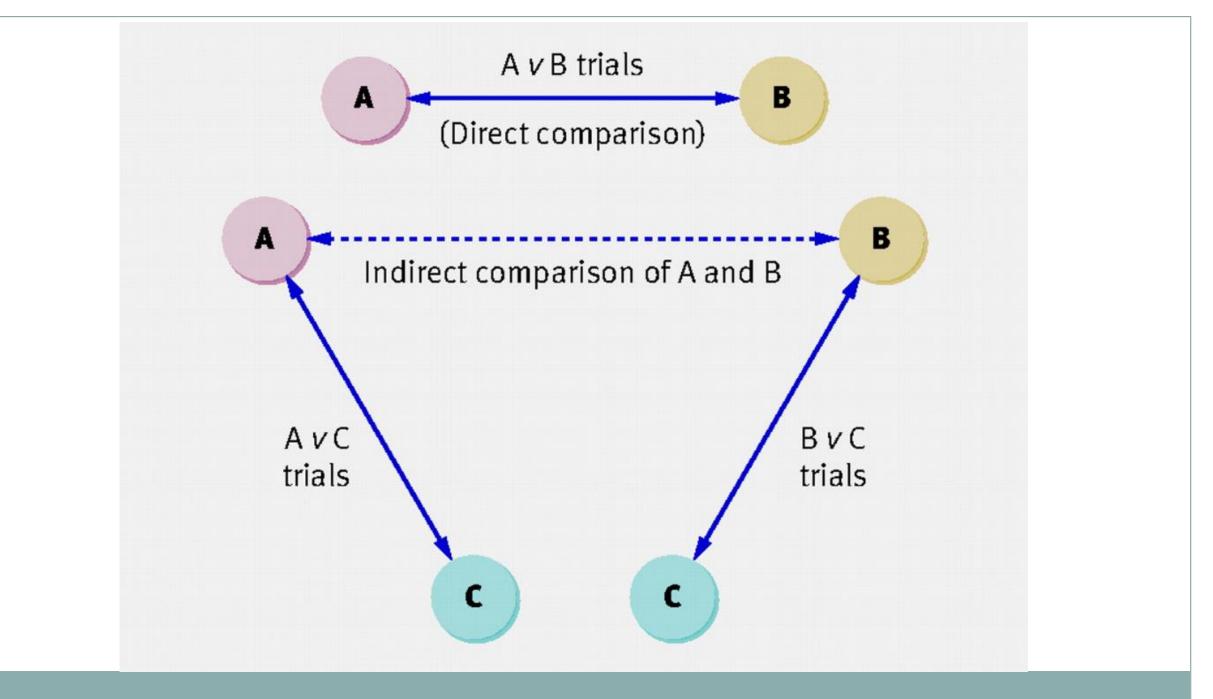
Annals of Oncology 29: 1249–1257, 2018

Commonly applied methods

Bucher

- IPD not required
- treatment effects calculated for each trial separately
- within study randomization preserved
- Matching-adjusted indirect comparison (MAIC)
 - IPD required for at least 1 trial
 - to match the IPD to the AgD of the other trial
- Simulated Treatment Comparison (STC)
 - IPD required for at least 1 trial
 - IPD substituted in mean covariate values
- Network Meta-Analysis (NMA)
 - comparing interventions simultaneously in a single analysis by combining both direct and indirect evidence across a network of studies.

SCUOLA DI METODOLOGIA DELLA RICERCA CLINICA


2023 - 9ª EDIZIONE

MODULI SPECIALISTICI - S3

NEGRAR DI VALPOLICELLA • 11 MAGGIO 2023 Centro Formazione IRCCS "Sacro Cuore - Don Calabria"

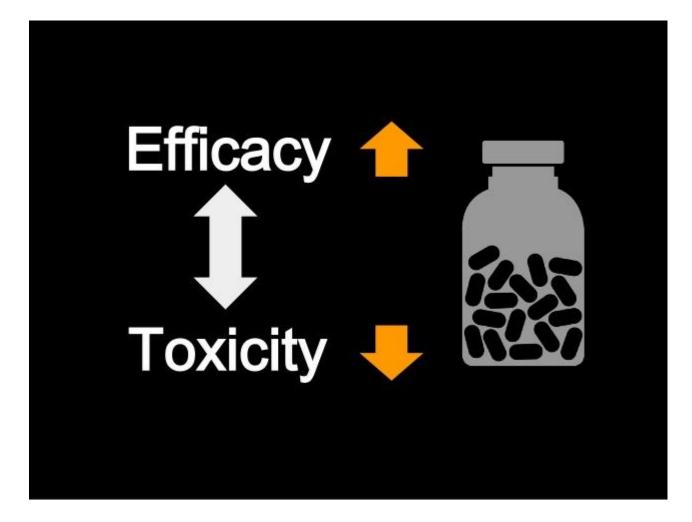
Indirect Treatment Comparison (Bucher) (M. Cinquini)

Critical Reviews in Oncology/Hematology 94 (2015) 213-227

www.elsevier.com/locate/critrevonc

Is there evidence for different effects among EGFR-TKIs? Systematic review and meta-analysis of EGFR tyrosine kinase inhibitors (TKIs) *versus* chemotherapy as first-line treatment for patients harboring EGFR mutations

Eva Regina Haspinger^a, Francesco Agustoni^a, Valter Torri^b, Francesco Gelsomino^a, Marco Platania^a, Nicoletta Zilembo^a, Rosaria Gallucci^a, Marina Chiara Garassino^{a,*}, Michela Cinquini^b


^a Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
 ^b Fondazione IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
 Accepted 11 November 2014

The best?

No head-to-head comparison

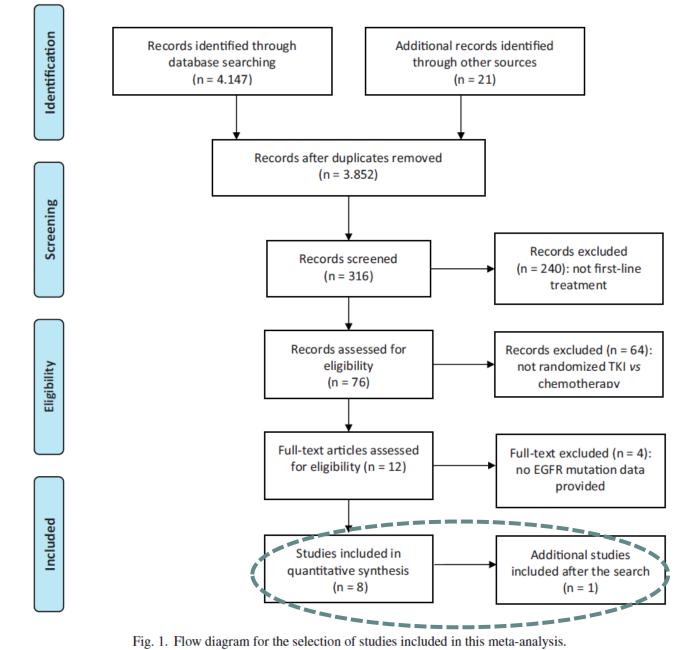
Population:

- \checkmark previously untreated
- \checkmark any age and race
- ✓ histologically proven NSCLC harbouring activating EGFR-mutation

Intervention:

 ✓ EGFR-TKIs (Erlotinib, Gefitinib, Afatinib)

Comparison:


✓ Platinum-based chemotherapy

Outcomes:

- ✓ PFS (whenever possible independently reviewed data)
- \checkmark PFS in exon 19 deletion
- ✓ PFS in L858R mutation
- ✓ OS
- ✓ ORR (complete and/or partial and/or stable)
- \checkmark Treatment related toxic events

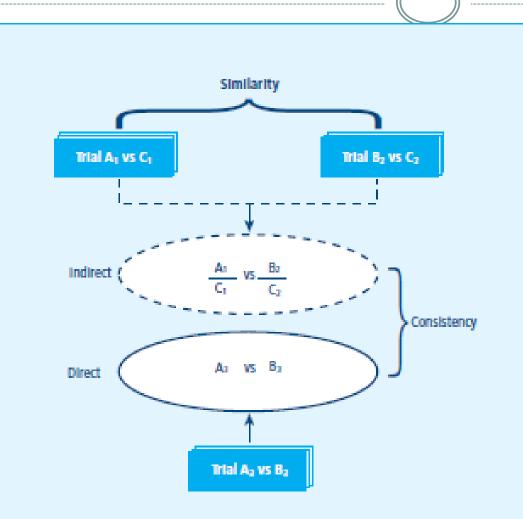
Search strategy

PubMed, Cancer-Lit, Embase-databases and Cochrane-Library were searched for RCTs up to June 2014 with no language or publication status restrictions. Search terms were "TKI" [Substance Name] and "Carcinoma, NSCLC" [Substance Name]. The proceedings of the 2008–2014 conferences of the American Society of Clinical Oncology(ASCO), European Society of Medical Oncology (ESMO) and International Association for the Study of Lung Cancer (IASLC), World Conference of Lung Cancer were also searched for relevant abstracts. Any unpublished RCTs were considered for inclusion.

From: Moher D, Liberati A, Telzlaff J, Altman DG, The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the Prisma statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097.

Indirect Comparisons

- Indirect comparison refers to a comparison of different healthcare interventions using data from separate studies, in contrast to a direct comparison within randomized controlled trials. Indirect comparison is often used because of a lack of, or insufficient, evidence from head-to-head comparative trials.
- Naive indirect comparison is a comparison of the results of individual arms from different trials as if they were from the same randomized trials. This method provides evidence equivalent to that of observational studies and should be avoided in the analysis of data from randomized trials.
- Adjusted indirect comparison (including mixed treatment comparison) is an indirect comparison of different treatments adjusted according to the results of their direct comparison with a common control, so that the strength of the randomized trials is preserved. Empirical evidence indicates that results of adjusted indirect comparison are usually, but not always, consistent with the results of direct comparison.


What is indirect comparison? Fujian Song BMed MMed PhD Reader in Research Synthesis, Faculty of Health, University of East Anglia www.whatisseries.co.uk http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/What_is_ind_comp.pdf

Indirect Comparisons

Basic assumptions underlying indirect comparisons include:

- homogeneity assumption for standard meta-analysis,
- similarity assumption for adjusted indirect comparison and
- consistency assumption for the combination of direct and indirect evidence. It is essential to fully understand and appreciate these basic assumptions in order to use adjusted indirect and mixed treatment comparisons appropriately.

Head to Head vs. Indirect Comparisons

Head to Head comparison comes from a trial where A was directly compared to B.

Indirect Comparison comes from multiple studies where A and B may have been compared to the same comparator (i.e., C) but have never been compared to each other in the same study,

What is indirect comparison? Fujian Song BMed MMed PhD Reader in Research Synthesis, Faculty of Health, University of East Anglia www.whatisseries.co.uk http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/What_is_ind_comp.pdf

HOMOGENEITY ASSUMPTION

- When multiple trials are available for a given comparison, the results from multiple trials can be pooled in metaanalyses before an adjusted indirect comparison is conducted.
- For a meta-analysis to be valid, it is commonly established that results from different trials should be sufficiently homogeneous from a clinical and statistical perspective.
- This is usually demonstrated by a 2-tailed p value for homogeneity at Pearson chi-squared test or Cochran Q test > 0.10 and a I² (inconsistency) < 50%.
- When homogeneity is unlikely (e.g. I²>50%) than heterogeneity and inconsistency are likely.

Data synthesis:

 \checkmark HR for PFS and OS

 \checkmark RR for the Others

PFS Panel A

			TKI-inhibitors	Chemotherapy		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 Gefitinib vs che	emotherapy						
FIRST-SIGNAL	-0.62	0.3584	26	16	11.8%	0.54 [0.27, 1.09]	
IPASS	-0.73	0.146	132	129	32.0%	0.48 [0.36, 0.64]	+
NEJSG002	-1.2	0.158	114	110	30.2%	0.30 [0.22, 0.41]	
WJTOG3405	-0.71	0.189	86	86	26.0%	0.49 [0.34, 0.71]	-
Subtotal (95% CI)			358	341	100.0%	0.43 [0.32, 0.56]	•
Heterogeneity: Tau ² =	= 0.04; Chi ² = 6.48, df	= 3 (P =	0.09); I ² = 54%				
Test for overall effect	: Z = 6.04 (P < 0.0000	11)					
1.1.2 Erlotinib vs che	emotherapy						
EURTAC	-0.99	0.195	86	87	36.2%	0.37 [0.25, 0.54]	-
OPTIMAL	-1.83	0.233	82	72	34.6%		-
TORCH	-0.51	0.354	19	20	29.1%		
Subtotal (95% CI)			187	179	100.0%	0.32 [0.16, 0.65]	◆
Heterogeneity: Tau ² =	= 0.32; Chi ² = 12.26, d	f= 2 (P	= 0.002); I ² = 84	%			
Test for overall effect	Z = 3.16 (P = 0.002)						
1.1.3 Afatinib vs che	motherapy						
LUX-LUNG3	-0.545	0.152	230	115	50.6%	0.58 [0.43, 0.78]	=
LUX-LUNG6	-1.27	0.17	242	122			*
Subtotal (95% CI)			472				◆
Heterogeneity: Tau ² =	= 0.24; Chi ² = 10.11, c	if=1 (P	= 0.001); l ² = 90	1%			
Test for overall effect		•					
							<u> </u>
							0.005 0.1 1 10 200
Test for subgroup dif	ferences: Chi ² = 0.55	. df = 2 (P = 0.76), I ² = 0	%			Favours TKI-inhibitors Favours Chemotherapy

Test for subgroup differences: $Chi^2 = 0.55$, df = 2 (P = 0.76), $I^2 = 0.%$

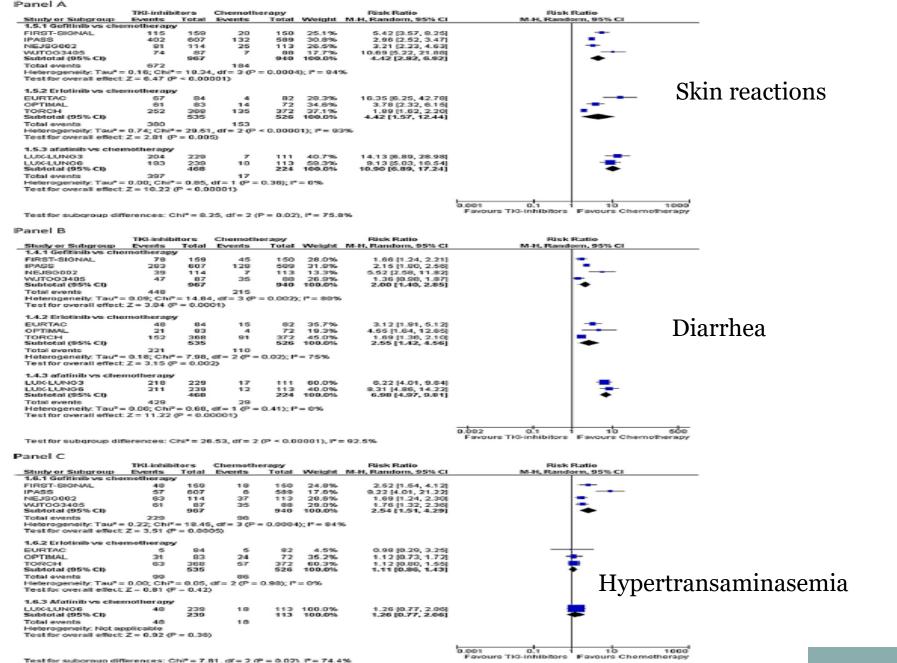
			TKI-inhibitors	Chemotherapy		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.15.1 Gefitinib							
IPASS	-0.6	0.23	64	47	61.4%	0.65 [0.35, 0.86]	
WJTOG3405	-0.67	0.29	36	49	38.6%	0.51 [0.29, 0.90]	
Subtotal (95% CI)			100	96	100.0%	0.53 [0.38, 0.76]	◆
Heterogeneity: Tau ² =	= 0.00; Chi ^z = 0.04, di	= 1 (P	= 0.85); I ^z = 0%				
Test for overall effect:	Z = 3.48 (P = 0.0005	0					
1.15.2 Erlotinib							
EURTAC	-0.6	0.32	29	29	50.0%	0.55 [0.29, 1.03]	
OPTIMAL	-1.35	0.32	39	33	50.0%	0.26 [0.14, 0.49]	
Subtotal (95% CI)			68	62			-
Heterogeneity: Tau ² =	= 0.18; Chi ² = 2.75, di	= 1 (P	= 0.10); l ² = 649	%			
Test for overall effect:	Z = 2.60 (P = 0.009)						
1.15.3 Afatinib							
LUX-LUNG3	-0.31	0.24	91	47	50.7%	0.73 [0.46, 1.17]	
LUX-LUNG6	-1.14	0.26	74	64	49.3%	0.32 [0.19, 0.53]	
Subtotal (95% CI)			165	111	100.0%		-
Heterogeneity: Tau ² =	= 0.28; Chi ² = 5.50, di	= 1 (P	= 0.02); l ² = 829	6			
Test for overall effect:	Z = 1.73 (P = 0.08)						
							0.01 0.1 1 10 100
							0.01 0.1 1 10 100

0.01 0.1 1 10 100 Favours TKI inhibitors Favours chemotherapy

Test for subgroup differences: $Chi^2 = 0.70$, df = 2 (P = 0.70), $i^2 = 0\%$

Exon 19

Study or Subgroup	log[Hazard Ratio]	SE	TKI - inhibitors Total		Moinht	Hazard Ratio IV, Random, 95% Cl	Hazard Ratio IV, Random, 95% Cl
1.14.1 Gefitinib	iog[nazaru Katio]	36	Total	Total	AAGIBUU	IV, Random, 95% CI	IV, Randolli, 95% Cl
IPASS	-0.97	0.2	66	74	64.6%	0.38 (0.26, 0.56)	-=-
WJTOG3405		0.27		37	35.4%	0.45 [0.26, 0.56]	
Subtotal (95% CI)	-0.6	0.27	116	111	100.0%	0.40 [0.29, 0.55]	▲
Heterogeneity: Tau ² :	= 0.00° Chi ² = 0.26, df	(= 1 (F					•
	Z = 5.66 (P < 0.0000	-					
1.14.2 Erlotinib							
EURTAC	-1.2	0.26	57	58	52.5%	0.30 [0.18, 0.50]	
OPTIMAL	-2.04	0.32	43	39	47.5%	0.13 [0.07, 0.24]	
Subtotal (95% CI)			100	97	100.0%	0.20 [0.09, 0.46]	
Heterogeneity: Tau ² :	= 0.27; Chi ² = 4.15, df	f = 1 (F	= 0.04); l2 = 76%				
Test for overall effect	Z = 3.81 (P = 0.0001)					
1.14.3 Afatinib							
LUX-LUNG3	-1.27	0.23	113	57	52.0%	0.28 [0.18, 0.44]	
LUX-LUNG6	-1.61	0.24	98	88	48.0%	0.20 [0.12, 0.32]	
Subtotal (95% CI)			211	145	100.0%	0.24 [0.17, 0.33]	◆
Heterogeneity: Tau ² =	= 0.00; Chi ² = 1.05, df	(= 1 (F	P = 0.31); I ² = 4%				
Test for overall effect	Z = 8.44 (P < 0.0000)1)					
							kan ala da da da
							0.01 0.1 i 10 100 Favours TKI inhibitors Favours Chemotherapy
Test for subgroup dif	forences: Chill = 6.04	df-	2/D = 0.05 $B = 6$	6.0%			Favours recommenders Favours Chemotherap


Exon 21

Test for subgroup differences: Chi² = 6.04, df = 2 (P = 0.05), l² = 66.9%

OS Panel B

				Chemotherapy		Hazard Ratio	Hazard Ratio
	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 Gefitinib vs chem	notherapy						
FIRST-SIGNAL	0.0392	0.3755	26	16	6.4%	1.04 [0.50, 2.17]	
IPASS	0	0.143	132	129	44.3%	1.00 [0.76, 1.32]	+
NEJSG002	-0.12	0.171	114	110	31.0%	0.89 [0.63, 1.24]	
WJTOG3405	0.17	0.223			18.2%		
Subtotal (95% CI)			358	341	100.0%	1.00 [0.83, 1.20]	•
Heterogeneity: Tau ² = (0.00; Chi ² = 1.08, df	= 3 (P =	0.78); l ² = 0%				
Test for overall effect: Z	Z = 0.04 (P = 0.97)						
1.2.2 Erlotinib vs chem	notherapy						
EURTAC	0.039	0.24	86	87	39.5%	1.04 [0.65, 1.66]	-+-
OPTIMAL	0.0677	0.219	82	72	47.4%	1.07 [0.70, 1.64]	-#-
TORCH	0.457	0.416	19	20	13.1%	17 U 17 U 17	
Subtotal (95% CI)			187	179	100.0%	1.11 [0.83, 1.50]	◆
Heterogeneity: Tau ² = (0.00; Chi ² = 0.82, df	= 2 (P =	0.66); 2 = 0%				
Test for overall effect: Z	Z = 0.71 (P = 0.48)						
1.2.3 Afatinib							
LUX-LUNG3	0.11	0.22	230	115	100.0%	1.12 [0.73, 1.72]	
Subtotal (95% CI)			230	115	100.0%	1.12 [0.73, 1.72]	•
Heterogeneity: Not app	licable						
Test for overall effect: 2	Z = 0.50 (P = 0.62)						
							0.01 0.1 1 10 10
Test for subaroup diffe	rences: Chi ² = 0.51	df = 2	P = 0.77) I ² = 09	K.			Favours TKI-inhibitors Favours Chemotherap

Test for subgroup differences: $Chi^2 = 0.51$, df = 2 (P = 0.77), $I^2 = 0.50$

WHAT TO DO IN PRESENCE OF HETEROGENEITY?

- Heterogeneity is an indication of dissimilarity in some effect-modifying factor
- In presence of heterogeneity, the first task should be to thoroughly explore and compare patient and trial characteristics across the studies
 - This should be already done as part of similarity testing
- If systematic differences are detected, then following methods could be considered:
 - 1. Sub-group analyses
 - 2. Random-effects modeling
 - 3. Meta-regression (depends on data availability)

SIMILARITY (TRANSITIVITY) ASSUMPTION

- For an adjusted indirect comparison (A vs B) to be valid, a similarity assumption is required in terms of moderators of relative treatment effect.
- That is, patients included should be sufficiently similar in the two sets of control arms (C₁ from the trial comparing A vs C₁, and C₂, from the trial comparing B vs C₂).
- This is crucial as only a large theoretical overlap between patients enrolled in C₁ and C₂ enables the relative effect estimated by trials of A versus C₁ to be generalizable to patients in trials of B versus C₁, and the relative effect estimated by trials of B versus C₂ to be generalizable to patients in trials of A versus C₂.

WHAT FACTORS DETERMINE SIMILARITY?

- Included trials should be "comparable" in terms of key factors that could affect the outcome of treatment
- If differences in patient or study characteristics would not be expected to influence treatment effect, the assumption of similarity is not violated
- There are no statistical methods to test for similarity
- Must use clinical knowledge and best judgement to assess appropriate comparability

- Effect modifiers include more than patient characteristics
- Trial and outcome properties are also important
- The PICOS framework can be used to identify these variables

	Description	Would the treatment be expected to work equally in all patients included into the meta-					
	Description	Sample Variab analysis?					
Р	Patient Population	Demographics, baseline clinical characteristics, disease severity					
1	Intervention	Dose, mode of admin, duration					
С	Comparator	Active treatment, placebo, concomitant meds					
0	Outcomes	Definitions, thresholds, ITT vs. PP, EOS vs. EOT, LOCF vs. NC=F,					
S	Setting	Study design, study duration, location/country, method of outcome assessment					

- Effect modifiers include more than patient characteristics
- Trial and outcome properties are also important
- The PICOS framework can be used to identify these variables

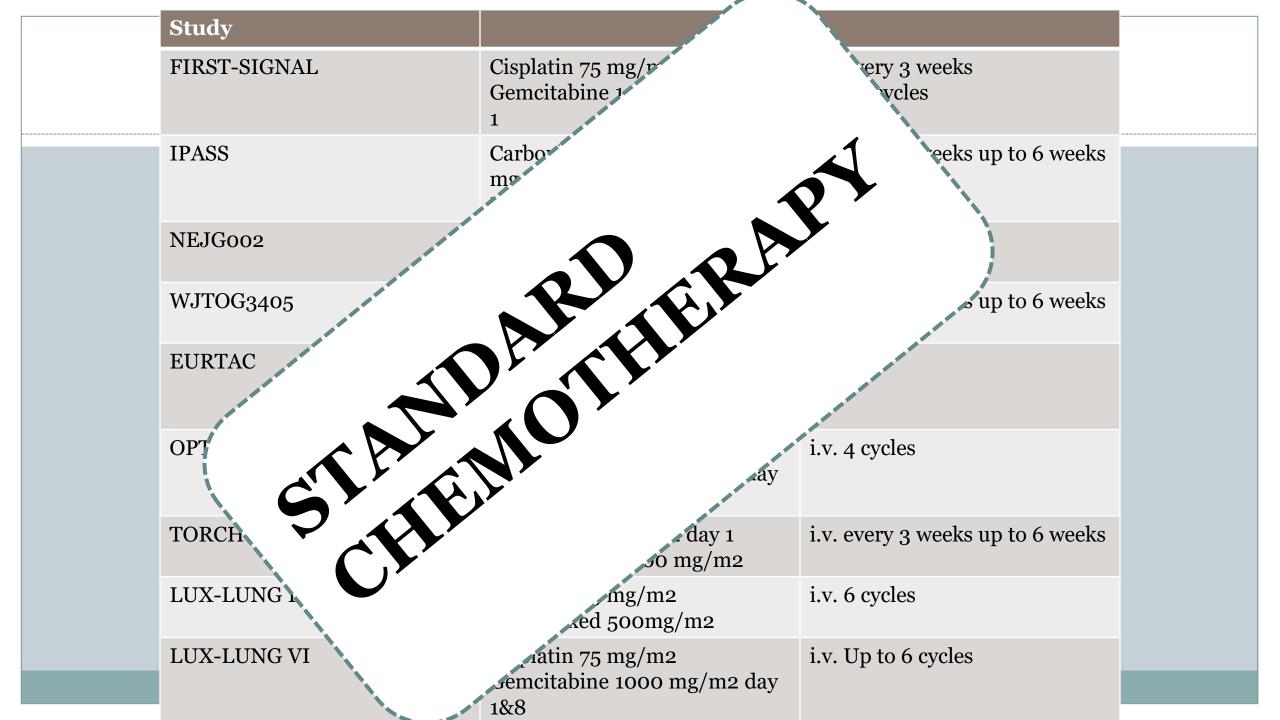
		Dosing and duration may or may not					
	Description	Sample Variab be important to treatment outcome.					
Р	Patient Population	Demographics, baseline clinical characteristics, disease severity					
1	Intervention	Dose, mode of admin, duration					
С	Comparator	Active treatment, placebo, concomitant meds					
0	Outcomes	Definitions, thresholds, ITT vs. PP, EOS vs. EOT, LOCF vs. NC=F,					
S	Setting	Study design, study duration, location/country, method of outcome assessment					

- Effect modifiers include more than patient characteristics
- Trial and outcome properties are also important
- The PICOS framework can be used to identify these variables

	Description	Sample Variables					
Р	Patient Population	Demographics, baseline clinical characteristics, disease severity					
I	Intervention	Dose, mode of admin, duration					
С	Comparator	Active treatment, placebo, concomitant meds					
0	Outcomes	Definitions, thresholds, ITT vs. PP, EOS vs. EOT, LOCF vs. NC=F,					
S	Setting	Study design, study duration, location/country, method of outcome assessment					
•							

In pair-wise meta-analyses the comparator must be the same for each trial. In NMA, the comparators need not be equal, but it must fit within the network.

- Effect modifiers include more than patient characteristics
- Trial and outcome properties are also important
- The PICOS framework can be used to identify these variables


	Description	Sample Variables						
Р	Patient Population	Demographics, baseline clinical characteristics, disease severity						
T	Intervention	Dose, mode of admin, duration						
С	Comparator	Active treatment, placebo, concomitant meds						
0	Outcomes •	Definitions, thresholds, ITT vs. PP, EOS vs. EOT, LOCF vs. NC=F,						
S	Setting	Study design, study duration, location/country, method of outcome assessment						
		How outcomes are calculated can influence observed treatment effect.						

- Effect modifiers include more than patient characteristics
- Trial and outcome properties are also important
- The PICOS framework can be used to identify these variables

	Description	Sample Variables						
Р	Patient Population	Demographics, baseline clinical characteristics, disease severity						
I	Intervention	Dose, mode of admin, duration						
С	Comparator	Active treatment, placebo, concomitant meds						
0	Outcomes	Definitions, thresholds, ITT vs. PP, EOS vs. EOT, LOCF vs. NC=F,						
S	Setting •	Study design, study duration, location/country, method of outcome assessment						
•		Some general study characteristics can be important. Eg, timing of assessments, study locations with different standards of care, patient vs. physician-reported outcomes.						

Table 1	
Characteristics of the 9 clinical trials included in the meta-analysis.	

	f the 9 clinical trials inc					<u>, j</u>	
Trial	Primary end-point	ТКІ	Chemotherapy	Patients (TKI/CT)	EGFR + patients (%)	Asiatic patients (%)	Crossover (%) ^a
IPASS Mok, 2009	Progression-free survival	Gefitinib	Carboplatin + paclitaxel	1.217 (609/608)	21.4	99.8	39.5
WJTOG3405 Mitsudomi, 2010	Progression-free survival	Gefitinib	Cisplatin + paclitaxel	177 (88/89)	100	100	59.3
NEJ002 Maemondo, 2010	Progression-free survival	Gefitinib	Carboplatin + paclitaxel	228 (114/114)	100	100	94.6
First-SIGNAL Han, 2012	Overall survival	Gefitinib	Cisplatin + gemcitabine	309 (159/150)	13.6	100	75.0
TORCH Gridelli, 2012	Overall survival	Erlotinib	Cisplatin + gemcitabine	760 (380/380)	5.1	0	60.9
OPTIMAL Zhou, 2011	Progression-free survival	Erlotinib	Carboplatin + gemcitabine	154 (82/72)	100	100	NA
EURTAC Rosell, 2011	Progression-free survival	Erlotinib	Cisplatin/carboplatin + docetaxel/gemcitabine	173 (86/87)	100	0	76.0
LUX-Lung 3 Sequist, 2012	Progression-free survival	Afatinib	Cisplatin + pemetrexed	345 (230/115)	100	100	75.0
LUX-Lung 6 Wu, 2013	Progression-free survival	Afatinib	Cisplatin + gemcitabine	364 (242/122)	100	100	56.0

So, who's the best?

COMPUTATIONS

• The log relative risk of the adjusted indirect comparison of A and B ($\ln RR_{A vs B}$) can be estimated by: $\ln RR_{A vs B} = \ln RR_{A vs C_1} - \ln RR_{B vs C_2}$

• and its standard error is:

SE ($\ln RR_{A vs B}$) = $\sqrt{[SE (\ln RR_{A vs C1})^2 + SE (\ln RR_{B vs C2})^2]}$

• Similar computations can be envisioned for odds ratio, absolute risk reductions, weighted mean differences, and standardized mean differences.

Higgins et al, BMJ 2003; Song, What is ...? 2009; http://www.metcardio.org/macros/IMT.xls

Panel A

				Hazard Ratio\Risk ratio	Hazard Ratio/Risk ratio
Study or Subgroup	log[Hazard Ratio'Risk ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Progression-free survival	0.295	0.385		1.34 [0.63, 2.86]	-++
PFS-exon 19	0.693	0.447		2.00 [0.83, 4.80]	++
PFS-L858R	0.332	0.417		1.39 [0.62, 3.16]	-++
Overall survival	-0.104	0.177		0.90 [0.64, 1.27]	+
Objective response rate	-0.036	0.168		0.96 [0.69, 1.34]	+
Diarrhea	-0.223	0.121		0.80 [0.63, 1.01]	+
Rash	0	0.101		1.00 [0.82, 1.22]	+
Hypertransaminasemia	0.83	0.175		2.29 [1.63, 3.23]	(+)
Treatment discontinuation	-0.019	0.384		0.98 [0.46, 2.08]	
Treatment-related death	1.05	1.295		2.86 [0.23, 36.17]	
	[1	lmage o	o <mark>f Fig. 5</mark>		0.05 0.2 1 5 20 Favours Gefitinib Favours Erlotinib

Panel B

				Hazard Ratio\Risk Ratio	Hazard Ratio Risk Ratio
Study or Subgroup	log[Hazard Ratio\Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Progression-free survival	0.048	0.387		1.05 [0.49, 2.24]	+
PFS-exon 19	0.511	0.235		1.67 [1.05, 2.64]	+-
PFS-L858R	0.078	0.447		1.08 [0.45, 2.60]	+
Overall survival	-0.099	0.167		0.91 [0.65, 1.26]	
Objective response rate	-0.097	0.157		0.91 [0.67, 1.23]	
Diarrhea	-1.25	0.187		0.29 (0.20, 0.41)	(+)
Rash	-0.903	0.244		0.41 [0.25, 0.65]	+
Hypertransaminasemia	0.701	0.276		2.02 [1.17, 3.46]	
Treatment discontinuation	0.531	0.273		1.70 [1.00, 2.90]	+-
Treatment-related death	0.022	0.136		1.02 [0.78, 1.33]	+
					0.001 0.1 1 10 1000

Favours Gefitinib Favours Afatinib

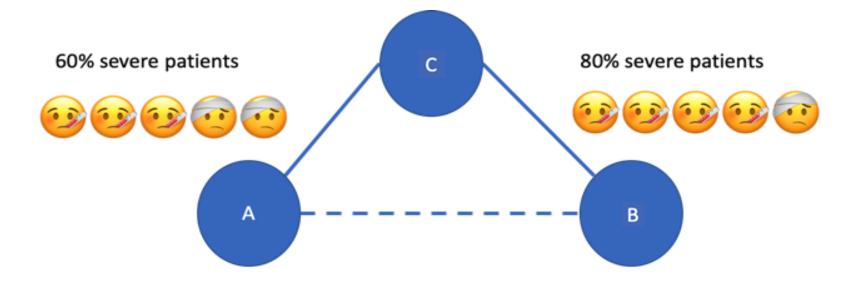
Panel C

				Hazard Ratio\Risk Ratio	Hazard Ratio Risk Ratio
Study or Subgroup	log[Hazard Ratio\Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Progression-free survival	-0.248	0.507		0.78 [0.29, 2.11]	-+
PFS-exon 19	-0.182	0.449		0.83 [0.35, 2.01]	-+-
PFS-L858R	-0.254	0.558		0.78 [0.26, 2.32]	-+
Objective response rate	-0.061	0.186		0.94 (0.65, 1.35)	+
Overall survival	0.094	0.204		1.10 [0.74, 1.64]	+
Hypertransaminasemia	-0.127	0.285		0.88 [0.50, 1.54]	
Diarrhea	-1.01	0.2		0.36 [0.25, 0.54]	(+)
Rash	-0.903	0.245		0.41 [0.25, 0.66]	+
Treatment discontinuation	0.55	0.395		1.73 [0.80, 3.76]	
Treatment-related death	-1.03	1.637		0.36 [0.01, 8.83]	
					0.002 0.1 1 10 500
					Favours Erlotinib Favours Afatinib

TAKE HOME MESSAGES

• Adjusted indirect comparison meta-analysis represents a simple yet robust tool to make statistical and clinical inference despite the lack of conclusive evidence from head-to-head randomized clinical trials.

• Despite being not at the uppermost level of the hierarchy of evidence based medicine, it can often provide results equivalent to those of subsequent direct comparisons.



"Mr. Osborne, may I be excused? My brain is full."

Centro Formazione IRCCS "Sacro Cuore - Don Calabria"

Matching-Adjusted Indirect Comparison (MAIC) Simulated Treatment Comparison (STC) (G.L. Pappagallo)

Population-adjusted Indirect Comparisons

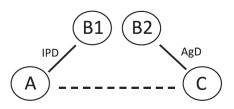
Matching-Adjusted Indirect Comparison (MAIC) and Simulated Treatment Comparison (STC)

- MAICs and STCs use patient-level data from a trial of a given treatment (referred to as the index trial) to derive a comparison of outcomes with competing treatments, based on published information from similarly designed studies, after adjusting for differences in the characteristics of the populations.
- *in other words*: individual patient data (IPD) in one or more trials are used to adjust for between-trial differences in the distribution of variables that influence outcome
- "anchored" indirect comparison (common comparator arm in each trial) Vs "unanchored" indirect comparison (disconnected treatment network or single-arm studies)
 - an unanchored MAIC or STC assumes that all effect modifiers and prognostic factors are accounted for
- unanchored methods for population adjustment are problematic and should not be used when anchored methods can be applied

https://www.nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf.

Population-adjusted Indirect Comparisons

Matching-Adjusted Indirect Comparison (MAIC) and Simulated Treatment Comparison (STC)


- MAICs and STCs use patient-level data from a trial of a given treatment (referred to as the index trial) to derive a comparison of outcomes with competing treatments, based on published information from similarly designed studies, after adjusting for differences in the characteristics of the populations.
- *in other words*: individual patient data (IPD) in one or more trials are used to adjust for between-trial differences in the distribution of variables that influence outcome
- "anchored" indirect comparison (common comparator arm in each trial) Vs "unanchored" indirect comparison (disconnected treatment network or single-arm studies)
 - an unanchored MAIC or STC assumes that all effect modifiers and prognostic factors are accounted for
- unanchored methods for population adjustment are problematic and should not be used when anchored methods can be applied

https://www.nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf.

MAIC Vs STC

• Matching-adjusted indirect comparison (MAIC)

 needs IPD for at least 1 trial, because the aim is to match the IPD to the AgD of the other trial

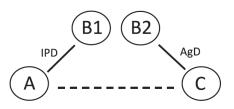
- the matching procedure selects a weight for each patient to reach similarity in the summary measures of the baseline characteristics of the IPD and AgD trial and follows the idea of *propensity score matching*
- the odds between being a patient in trial AB Vs trial CB provides the weights for balancing the populations
- Simulated Treatment Comparison (STC)
 - based on a regression model for the IPD, which is substituted in mean covariate values
 - the relationship between population characteristics and outcome in the IPD trial was used to estimate the outcome for the AgD trial population

Comparative Effectiveness Research in Oncology Methodology: Observational Data

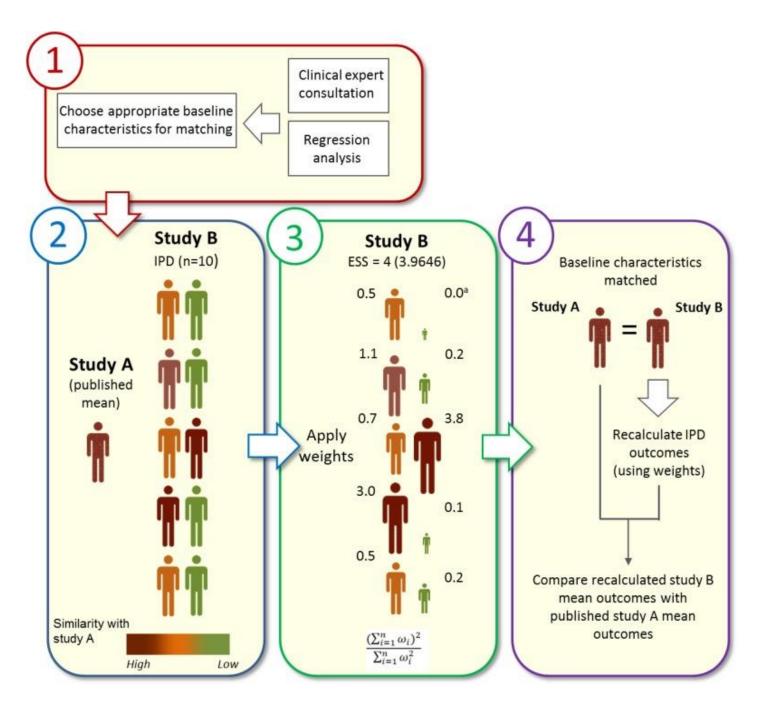
Dawn L. Hershman and Jason D. Wright

J Clin Oncol 30:4215-4222. © 2012 by American Society of Clinical Oncology

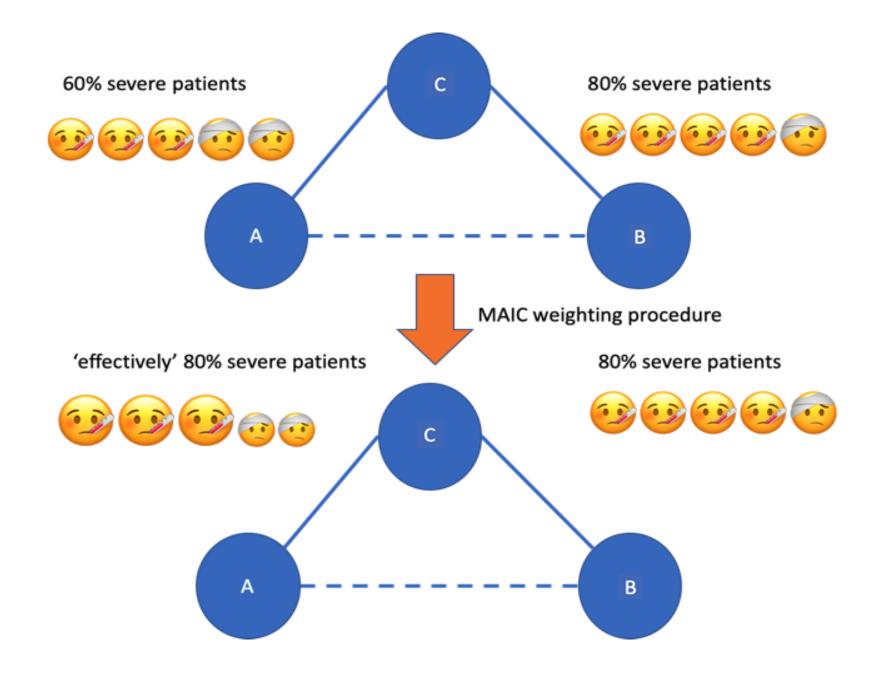
Propensity Score Analysis


Propensity score analyses attempt to balance covariates between experimental groups. Using multivariable modeling, the characteristics of a cohort are used to calculate the probability of receiving the intervention. This probability is the propensity score.

Le caratteristiche della coorte vengono usate per calcolare la probabilità di ricevere l'uno o l'altro dei trattamenti a confronto. Tale probabilità è il *propensity score*.


MAIC Vs STC

• Matching-adjusted indirect comparison (MAIC)


 needs IPD for at least 1 trial, because the aim is to match the IPD to the AgD of the other trial

- the matching procedure selects a weight for each patient to reach similarity in the summary measures of the baseline characteristics of the IPD and AgD trial and follows the idea of *propensity score matching*
- the odds between being a patient in trial AB Vs trial CB provides the weights for balancing the populations
- Simulated Treatment Comparison (STC)
 - based on a regression model for the IPD, which is substituted in mean covariate values
 - the relationship between population characteristics and outcome in the IPD trial was used to estimate the outcome for the AgD trial population

- relevant clinical baseline parameters are selected for matching
- matching is performed by application of weights to each IPD (derived by logistic regression) using a matching algorithm similar to propensity score matching
- study B mean IPD population baseline characteristics match the mean of study A and outcomes can now be compared directly between the two studies

Axitinib, cabozantinib, or everolimus in the treatment of prior sunitinib-treated patients with metastatic renal cell carcinoma: results of matching-adjusted indirect comparison analyses BMC Cancer (2018) 18:1271

Irina Proskorovsky^{1*}, Agnes Benedict², Sylvie Negrier³, Danielle Bargo⁴, Rickard Sandin⁵, Krishnan Ramaswamy⁴, Jigar Desai⁴, Joseph C. Cappelleri⁴ and James Larkin⁶

Trial	AXIS	METEOR
Arm	Axitinib, before matching (N = 194)	Cabozantinib (N = 135)
ECOG PS or KPS, %		
0 (KPS 90–100)	52	70
1 (KPS 70–80)	48	30
MSKCC in the base-case analysis, %		
Favourable	20	41
Intermediate	42	47
Poor	34	13
NR	4	0
Histology, %		
Clear cell or clear cell component	98	100
Metastatic site, %		
Lung	73	59
Bone	30	20
Liver	33	32
Prior nephrectomy, %	88	86
Prior radiotherapy, %	23	29

Axitinib, cabozantinib, or everolimus in the treatment of prior sunitinib-treated patients with metastatic renal cell carcinoma: results of matching-adjusted indirect comparison analyses

BMC Cancer (2018) 18:1271

Irina Proskorovsky^{1*}, Agnes Benedict², Sylvie Negrier³, Danielle Bargo⁴, Rickard Sandin⁵, Krishnan Ramaswamy⁴, Jigar Desai⁴, Joseph C. Cappelleri⁴ and James Larkin⁶

Trial	AXIS	AXIS	METEOR
Arm	Axitinib, before matching (N = 194)	Axitinib, after matching vs. cabozantinib (ESS = 104/114)	Cabozantinib (N = 135)
ECOG PS or KPS, %			
0 (KPS 90–100)	52	70	70
1 (KPS 70–80)	48	30	30
MSKCC in the base-case analysis, %			
Favourable	20	41	41
Intermediate	42	47	47
Poor	34	13	13
NR	4	0	0
Histology, %			
Clear cell or clear cell component	98	100	100
Metastatic site, %			
Lung	73	59	59
Bone	30	20	20
Liver	33	32	32
Prior nephrectomy, %	88	86	86
Prior radiotherapy, %	23	29	29

Matching-adjusted indirect comparison of health-related quality of life of nivolumab plus cabozantinib versus pembrolizumab plus axitinib in previously untreated advanced renal cell carcinoma

Presented at the ESMO Virtual Congress 2021, September 16-21

Effect modifier, %ª	CheckMate 9ER (unadjusted)	CheckMate 9ER (adjusted) ^b	KEYNOTE-426
IMDC risk category ^a			
Favorable	22.4	31.2	31.2
Intermediate	57.8	56.2	56.2
Poor	19.8	12.5	12.5
Prior nephrectomy			
Yes	69.9	83.0	83.0
No	30.1	17.0	17.0
Sites of metastatic disease			
Lymph node			
Yes	40.1	46.0	46.0
No	59.9	54.0	54.0
Liver			
Yes	19.4	15.9	15.9
No	80.6	84.1	84.1
Adrenal gland			
Yes	11.1	16.6	16.6
No	88.9	83.4	83.4
Age category			
< 65 years	61.6	62.5	62.5
≥ 65 years	38.4	37.5	37.5
Geographic region			
Rest of the world	51.0	51.6	51.6
US/Canada/western Europe	49.0	48.4	48.4

Matching-adjusted indirect comparison of health-related quality of life of nivolumab plus cabozantinib versus pembrolizumab plus axitinib in previously untreated advanced renal cell carcinoma

Presented at the ESMO Virtual Congress 2021, September 16-21

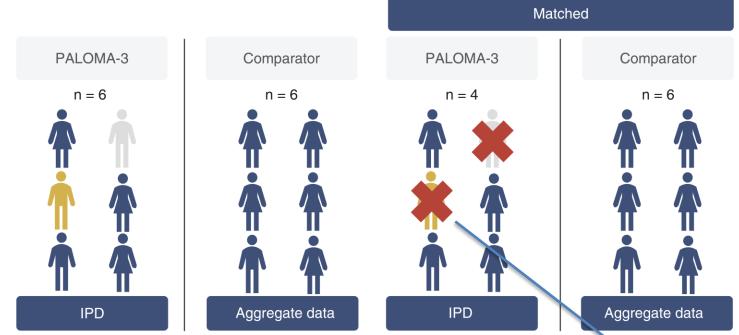
Effect modifier, %ª	CheckMate 9ER (unadjusted)	CheckMate 9ER (adjusted) ^b	KEYNOTE-426
IMDC risk category ^a			
Favorable	22.4	31.2	31.2
Intermediate	57.8	56.2	56.2
Poor	19.8	12.5	12.5
Prior nephrectomy			
Yes	69.9	83.0	83.0
No	30.1	17.0	17.0
Sites of metastatic disease			
Lymph node			
Yes	40.1	46.0	46.0
No	59.9	54.0	54.0
Liver			
Yes	19.4	15.9	15.9
No	80.6	84.1	84.1
Adrenal gland			
Yes	11.1	16.6	16.6
No	88.9	83.4	83.4
Age category			
< 65 years	61.6	62.5	62.5
≥ 65 years	38.4	37.5	37.5
Geographic region			
Rest of the world	51.0	51.6	51.6
US/Canada/western Europe	49.0	48.4	48.4

Matching-adjusted indirect comparison of health-related quality of life of nivolumab plus cabozantinib versus pembrolizumab plus axitinib in previously untreated advanced renal cell carcinoma

Presented at the ESMO Virtual Congress 2021, September 16-21

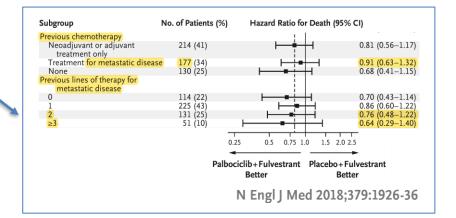
Outcome	CheckMate 9ER (unadjusted)	CheckMate 9ER (adjusted)⁵	KEYNOTE-426
TTFD, HR (95% CI)ª EQ-VAS	0.71 (0.56-0.89) ^c	0.74 (0.59-0.93) ^c	1.02 (0.86-1.20)
TTCD, HR (95% CI)ª EQ-VAS FKSI-DRS	0.71 (0.55-0.94) ^c 0.62 (0.46-0.82) ^c	0.81 (0.62-1.05) 0.69 (0.53-0.91) ^c	1.12 (0.91-1.38) 1.44 (1.14-1.82)
Change from baseline at week 30, LSMD (95% CI) ^b EQ-VAS FKSI-DRS	1.54 (−0.89 to 3.97) 1.64 (0.98-2.31) ^c	1.15 (-1.19 to 3.50) 1.35 (0.70-2.00) ^c	-1.4 (-3.90 to 1.10) -0.5 (-1.10 to 0.10)

Outcome	MAIC results, NIVO+CABO vs PEM+AXI
TTFD, HR (95% Crl) ^a EQ-VAS	0.73 (0.55-0.96) ^c
TTCD, HR (95% Crl) ^a EQ-VAS FKSI-DRS	0.72 (0.52-1.01) 0.48 (0.33-0.69) ^c
Change from baseline at week 30, LSMD (95% Crl) ^b EQ-VAS FKSI-DRS	2.55 (-0.88 to 5.98) 1.85 (0.96-2.74) ^c

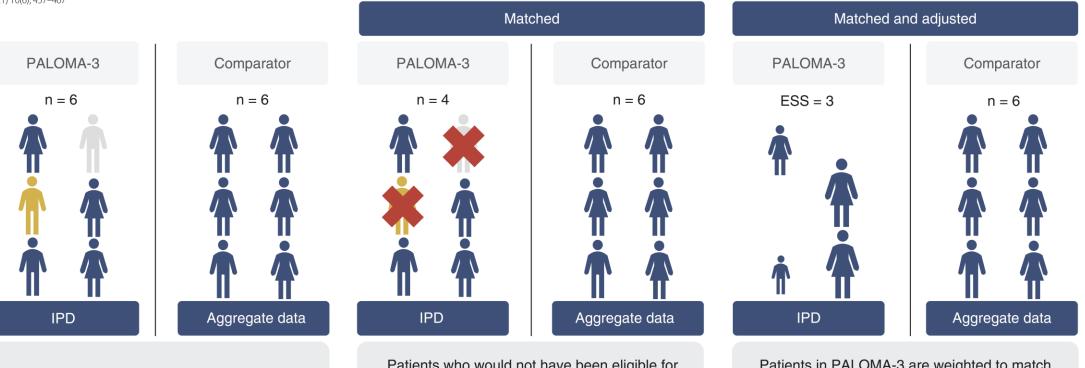

EJC SUPPLEMENTS I6 (202I) 5-I3

Matching-adjusted indirect treatment comparison of [¹⁷⁷Lu]Lu-DOTA-TATE, everolimus and sunitinib in advanced, unresectable gastroenteropancreatic neuroendocrine tumours: Relative effectiveness of [¹⁷⁷Lu]Lu-DOTA-TATE in gastroenteropancreatic neuroendocrine tumours Mohid S. Khan^{a,*}, Elaine Stamp^b, Cormac Sammon^b, Tessa Brabander^c, Wouter W. de Herder^c, Marianne E. Pavel^d

	ERASMUS (pre-match)	ERASMUS (post-match Sunitinib)	NCT00428597	ERASMUS (post- match everolimus)	RADIANT- 3
	[¹⁷⁷ Lu]Lu- DOTA-TATE	[¹⁷⁷ Lu]Lu- DOTA-TATE	Sunitinib	[¹⁷⁷ Lu]Lu- DOTA-TATE	Everolimus
N Effective sample size:	62	62 48	86	62 22	207

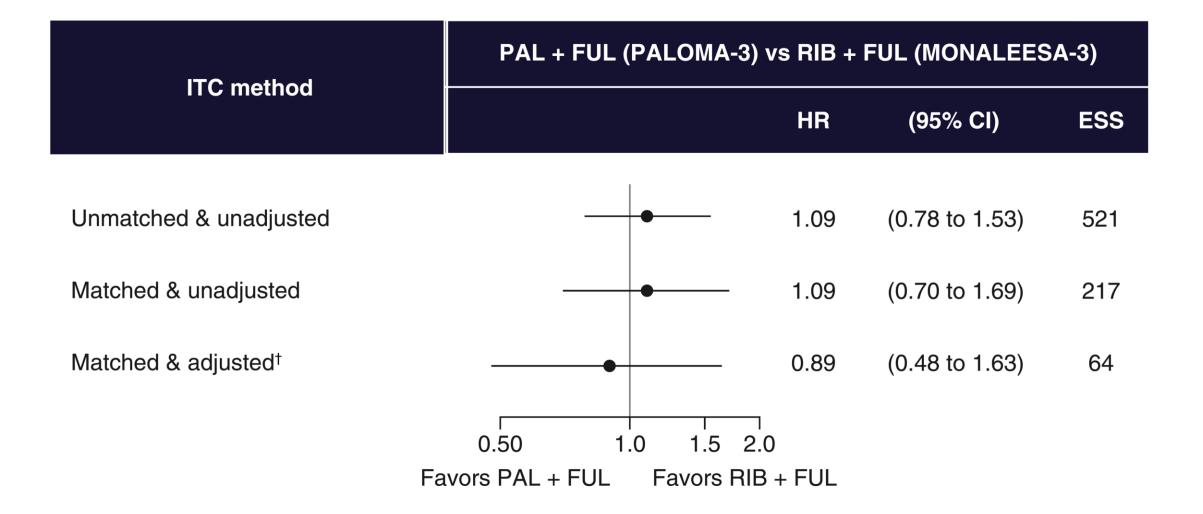

[¹⁷⁷ Lu]Lu-DOTA-TATE	[¹⁷⁷ Lu]Lu-DOTA-TATE
	(reweighted ERASMUS) vs.
NCT00428597 (sunitinib)	RADIANT-3 (everolimus)
Hazard ratio OS	Hazard ratio OS
(95% CI)	(95% CI)
0.42 [0.25, 0.72]	0.53 [0.33, 0.87]

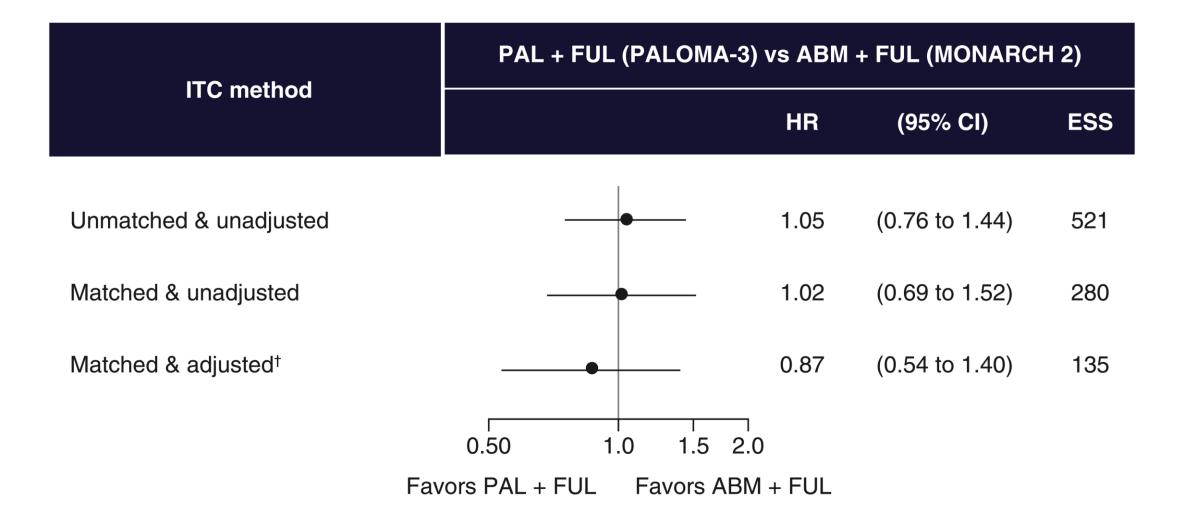
Matching-adjusted indirect comparison of palbociclib versus ribociclib and abemaciclib in hormone receptor-positive/HER2-negative advanced breast cancer Hope S Rugo*.¹, Anja Haltner², Lin Zhan³, Anh Tran², Eustratios Bananis³, Becky Hooper², Debanjali Mitra³ & Chris Cameron²



Published trials differ on eligibility criteria and patient characteristics

Patients who would not have been eligible for enrolment in the comparator trial are excluded (e.g., patients with prior chemotherapy for MBC, or had ≥2 prior lines of ET for MBC)

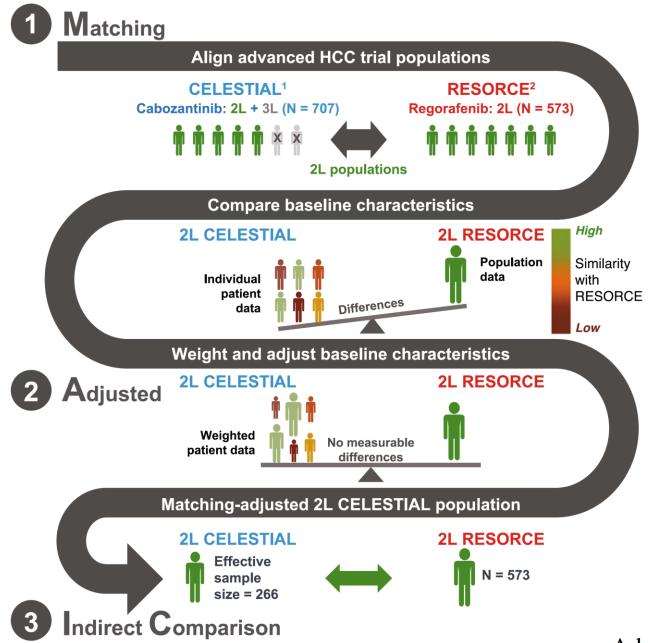

Matching-adjusted indirect comparison of palbociclib versus ribociclib and abemaciclib in hormone receptor-positive/HER2-negative advanced breast cancer Hope S Rugo*.¹, Anja Haltner², Lin Zhan³, Anh Tran², Eustratios Bananis³, Becky Hooper², Debanjali Mitra³, & Chris Cameron², J. Comp. Eff. Res. (2021) 10(6), 457–467


Published trials differ on eligibility criteria and patient characteristics

Patients who would not have been eligible for enrolment in the comparator trial are excluded (e.g., patients with prior chemotherapy for MBC, or had ≥2 prior lines of ET for MBC) Patients in PALOMA-3 are weighted to match the averages reported in the comparator trial; ESS reflects practical sample size after adjusting

Adjustment is based on **treatment-effect modifiers** such as prior ET setting and number of lines of therapy for MBC Matching-adjusted indirect comparison of palbociclib versus ribociclib and abemaciclib in hormone receptor-positive/HER2-negative advanced breast cancer Hope S Rugo*¹⁰, Anja Haltner²⁰, Lin Zhan³, Anh Tran², Eustratios Bananis²⁰, Becky Hooper²⁰, Debanjali Mitra³⁰ & Chris Cameron²⁰ J. Comp. Eff. Res. (2021) 10(6), 457–467

Matching-adjusted indirect comparison of palbociclib versus ribociclib and abemaciclib in hormone receptor-positive/HER2-negative advanced breast cancer Hope S Rugo*¹⁽⁰⁾, Anja Haltner²⁽⁰⁾, Lin Zhan³, Anh Tran², Eustratios Bananis³⁽⁰⁾, Becky Hooper²⁽⁰⁾, Debanjali Mitra³⁽⁰⁾ & Chris Cameron²⁽⁰⁾ J. Comp. Eff. Res. (2021) 10(6), 457–467


Matching-adjusted indirect comparison of palbociclib versus ribociclib and abemaciclib in hormone receptor-positive/HER2-negative advanced breast cancer Hope S Rugo*^{,1}, Anja Haltner², Lin Zhan³, Anh Tran², Eustratios Bananis³, Becky Hooper², Debanjali Mitra³ & Chris Cameron² J. Comp. Eff. Res. (2021) 10(6), 457-467

> Sensitivity analysis: unmatched & adjusted comparison of palbociclib + fulvestrant vs. ribociclib / abemaciclib + fulvestrant

				_	_	_	_	_	-	-
	Scenario	Hazard Ratio (95% CI)	ESS							
	Unmatched & unadjusted —	• 1.09 (0.78 to 1.53)	521							
	Scenario A•	0.90 (0.51 to 1.60)	98		~	✓ ✓	• • •	• • • •	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓
	Scenario B ——•	0.87 (0.49 to 1.58)	99		✓	× ×	v v v	v v v	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓
σ	Scenario C —	0.87 (0.48 to 1.56)	128	~		1	✓ ✓	· · ·	× × × ×	✓ ✓ ✓ ✓
Adjusted	Scenario D —	0.90 (0.50 to 1.65)	129	1		1	× ×	× × ×	1 1 1	✓ ✓ ✓
Ā	Scenario E —	0.89 (0.55 to 1.46)	152	~	Í	1	✓ ✓	× ×	✓ ✓	✓ ✓
	Scenario F ——•	0.93 (0.64 to 1.34)	352	~		✓	¥	✓	¥	✓
	Scenario G ——	0.95 (0.67 to 1.37)	392	~						
	0.38 0.52 0.79 Favors PAL+FUL	L.OG 1.47 Favors RIB+FUL	400	Wellow and a start		and all all all all all all all all all al	de aiot state	seller stol state state	Selection of the select	and and the state of the state

Scenario			Hazard Ratio (95% CI)	ESS													
Unmatched & unadju	isted	•	1.05 (0.76 to 1.44)	521													
Scenario A	•		0.85 (0.53 to 1.37)	141	~	1	~	1	~	~	1	1	~	1	~	~	~
Scenario B	•		0.86 (0.53 to 1.39)	142	1	1	1	1	1	~	1	1	~	1	~	~	
Scenario C			0.86 (0.53 to 1.40)	150	~	1	~	~	~	~	1	~	~	1	~		
Scenario D			0.86 (0.53 to 1.39)	151	~	~	~	~	~	~	1	~	~	~			
Scenario E	•		0.84 (0.52 to 1.37)	151	1	1	~	1	1	~	1	1	~				
Scenario F			0.99 (0.61 to 1.59)	170	~	~	~	1	1	~	1	1					
Scenario G		•	1.02 (0.63 to 1.66)	169	~	1	~	~	~	~	~						
Scenario H		•	1.02 (0.63 to 1.67)	170	1	1	1	1	1	~							
Scenario I			0.96 (0.60 to 1.55)	187	~	~	~	1	1								
Scenario J		·	0.97 (0.62 to 1.50)	197	~	~	~	~									
Scenario K		<u> </u>	0.97 (0.64 to 1.48)	217	1	1	1										
Scenario L	•		0.95 (0.65 to 1.39)	251	~	~											
Scenario M		<u> </u>	0.98 (0.71 to 1.35)	481	1												
Fa	0.42 0.56 0.83	1.09 1.5 Favors ABM	+FUL	7 Čo	Scould Stores &	Nord Section S	Street de	n ton	Qilor A	deeloon at the second	opion of the opion	A Belog	10 Status	O'S A A A A A A A A A A A A A A A A A A A	Hold Contraction	AN A	^{co} o ^c

quilot

Adv Ther (2020) 37:2678–2695

Matching cannot account for all differences between trial populations, and it is possible that the results of this MAIC are affected by some residual between-trial differences, as evidenced by **the difference in survival outcomes for the placebo arms despite matching and adjustment**.

		KM-derived estimate, months (median [95% CI])	p value
Overall survival			
Active treatment	Cabozantinib (ESS = 187)	11.4 (8.9–17.0)	0.3474 ^a
	Regorafenib ($n = 379$)	10.6 (9.1–12.1)	
Placebo	CELESTIAL (ESS $= 81$)	7.2 (6.1–10.8)	NE
	RESORCE $(n = 194)$	7.8 (6.3–8.8)	
Progression-free survival			
Active treatment	Cabozantinib (ESS = 187)	5.6 (4.9–7.3)	0.0005 ^a
	Regorafenib ($n = 379$)	3.1 (2.8–4.2)	
Placebo	CELESTIAL (ESS = 81)	1.9 (1.9–2.1)	NE
	RESORCE $(n = 194)$	1.5 (1.4–1.6)	

Table 3 Median survival estimates for the matching-adjusted second-line CELESTIAL population and the RESORCEpopulation: weighted Kaplan-Meier estimates

CI confidence interval, ESS effective sample size, KM Kaplan-Meier, NE not evaluated

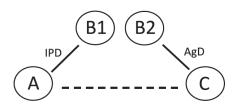
^a Log-rank test

Adv Ther (2020) 37:2678-2695

Matching-adjusted indirect comparison (MAIC)

Advantages

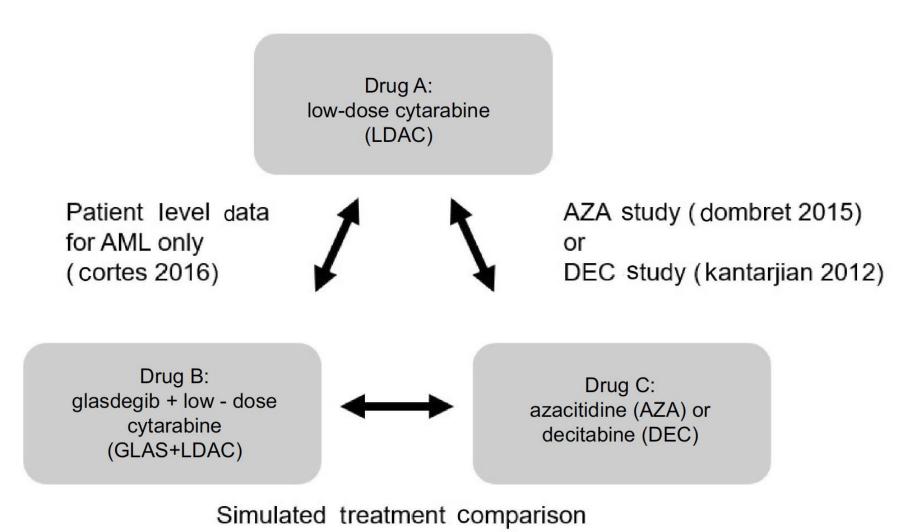
- Reduces heterogeneity between trials by matching the patient population
- Treatment effects have clear clinical context for interpretation
- Possible with and without placebo adjustment
- Long-term analyses feasible


Disadvantages

- Evolving method—NICE Technical Support Document published in December 2016 [2]
- Interferes with/breaks randomisation
- Reduced patient sample size
- Only a single indirect path
- Can only match observed characteristics, so heterogeneity may remain

Choy et al. Arthritis Research & Therapy (2019) 21:32 https://doi.org/10.1186/s13075-019-1812-3

MAIC Vs STC


- Matching-adjusted indirect comparison (MAIC)
 - needs IPD for at least 1 trial, because the aim is to match the IPD to the AgD of the other trial

- the matching procedure selects a weight for each patient to reach similarity in the summary measures of the baseline characteristics of the IPD and AgD trial and follows the idea of propensity score matching
- the odds between being a patient in trial AB Vs trial CB provides the weights for balancing the populations
- Simulated Treatment Comparison (STC)
 - based on a regression model for the IPD, which is substituted in mean covariate values
 - the relationship between population characteristics and outcome in the IPD trial was used to estimate the outcome for the AgD trial population

Overall survival of glasdegib in combination with low-dose cytarabine, azacitidine, and decitabine among adult patients with previously untreated AML: comparative effectiveness using simulated treatment comparisons ClinicoEconomics and Outcomes Research 2019:11 551–565

Gabriel Tremblay¹ Tracy Westley¹ Joseph C Cappelleri² Bhakti Arondekar² Geoffrey Chan² Timothy J Bell² Andrew Briggs³

Overall survival of glasdegib in combination with low-dose cytarabine, azacitidine, and decitabine among adult patients with previously untreated AML: comparative effectiveness using simulated treatment comparisons ClinicoEconomics and Outcomes Research 2019:11 551–565

Gabriel Tremblay¹

Bhakti Arondekar²

Geoffrey Chan²

Timothy J Bell² Andrew Briggs³

Tracy Westley¹ Joseph C Cappelleri²

Criteria	Parameters	Interpretation				
Step 1 – Variable selection	Effect modification testing with Cox model Stepwise process for variable selection	Mode Is needs to contain variables that have potential effect modification or are prognostic factors				
Step 2 – Comparison of functional forms	Proportional hazard assumption testing Statistics fit using AIC/BIC, Chi-square, log- likelihood, treatment effect (e.g. hazard ratio)	Proportionality should be tested to evaluate if AFT models, or proportional models should be used				
Step 3 – Visual inspection	Comparison of survival curves to the Kaplan- Meier Graphing hazard ratio over time for the functional forms, the Kaplan-Meier and the cox model	Comparison of the survival curves and hazard ratios over time to the original Kaplan-Meier and Cox model				
Step 4 – Prediction validation	Survival time (Mean, Median), survival difference between arms, predicted hazard ratio	Comparing the covariate adjusted predictions to the original trial population				
	Comparing the covariate-adjusted estimates	using the different functional forms				

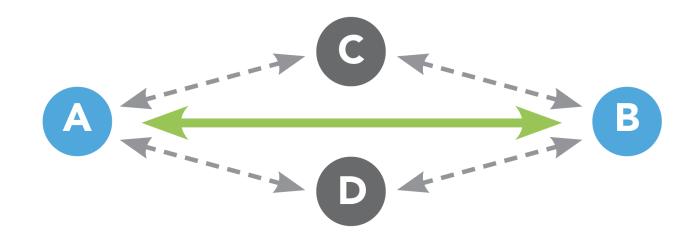
Overall survival of glasdegib in combination with
low-dose cytarabine, azacitidine, and decitabine
among adult patients with previously untreated
AML: comparative effectiveness using simulated
treatment comparisonsGabriel Tremblay1
Tracy Westley1
Joseph C Cappelleri2
Bhakti Arondekar2
Geoffrey Chan2
Timothy J Bell2
Andrew Briggs3

Table 3 ITC Cox and STC exponential model results: AZA comparison, DSU guidance

Treatments Compared: model		GLAS + LDAC vs LDAC		- DAC d)	GLAS + LDAC vs AZA		
		95% CI	HR	95% CI	HR	95% CI	
GLAS + LDAC vs AZA: Cox unadjusted (standard ITC)*	0.463	0.299, 0.717	0.900	0.700, 1.160	0.514	0.310, 0.852	
GLAS + LDAC vs AZA: Cox full (multivariate ITC)**	0.418	0.224, 0.779	0.900	0.700, 1.160	0.464	0.237, 0.910	
GLAS + LDAC vs AZA: stepwise exponential (STC)	0.382	0.217, 0.673	0.900	0.700, 1.160	0.424	0.228, 0.789	
GLAS + LDAC vs AZA: full exponential (STC)	0.401	0.219, 0.736	0.900	0.700, 1.160	0.446	0.231, 0.860	

Table 6 ITC Cox and STC exponential model results: DEC comparison, DSU guidance

Treatments Compared: Model	GLAS + LDAC vs LDAC		DEC vs L (publishe		GLAS + LDAC vs DEC		
		95% CI	HR	95% CI	HR	95% CI	
GLAS + LDAC vs DEC: Cox unadjusted (standard ITC)*	0.463	0.299, 0.717	0.820	0.680, 0.990	0.565	0.351, 0.909	
GLAS + LDAC vs DEC: Cox full (multivariate ITC)**	0.418	0.224, 0.779	0.820	0.680, 0.990	0.510	0.266, 0.977	
GLAS + LDAC vs DEC: stepwise exponential (STC)	0.414	0.227, 0.757	0.820	0.680, 0.990	0.505	0.269, 0.949	
GLAS + LDAC vs DEC: STC full exponential (STC)	0.401	0.219, 0.736	0.820	0.680, 0.990	0.490	0.259, 0.924	

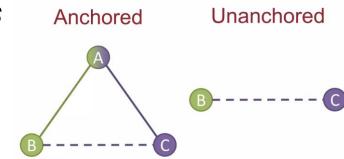

Simulation and Matching-Based Approaches for Indirect Comparison of Treatments

K. Jack Ishak¹ · Irina Proskorovsky¹ · Agnes Benedict² Pharmacoeconomics. 2015 Jun;33(6):537-49.

	STC	MAIC			
Mechanism to adjust for differences in characteristics of populations	Regression equation for each outcome of interest	Logistic regression equation for weights for each comparator of interest			
Derivation of adjusted estimate of outcomes with treatment A	Predicted from equation for each outcome by setting predictors to match comparator population profile	Weighted summary of outcomes observed in index trial			
Estimate of indirect comparison					
Continuous outcome	Difference in adjusted mean for treatment A and obse	erved mean for treatment B			
Dichotomous outcome	Ratio of adjusted odds for treatment A and observed odds for treatment B				
Time to event	Hazard ratio derived from fitted distributions to index and comparator curves (STC) or joint analysis of index and virtual event-time data (MAIC)				

Table 1 Summary of the main steps and approaches in STC and MAIC analyses

STC simulated treatment comparison, MAIC matching-adjusted indirect comparison

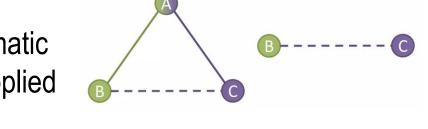

STC/MAIC can be complementary, providing a different perspective on the comparison of interest (e.g., A vs. B) reflecting how the treatments would have been compared if studied together in the same trial.

Ishak KJ, Phatak H, Masseria C. Making Sense of Novel Approaches for Indirect Comparison: Similarities and Differences of Simulation and Matching Based Approaches. Workshop Presented at ISPOR's European Meeting, 2015, Milan, Italy.

Population-adjusted Indirect Comparisons

Matching-Adjusted Indirect Comparison (MAIC) and Simulated Treatment Comparison (STC)

- MAICs and STCs use patient-level data from a trial of a given treatment (referred to as the index trial) to derive a comparison of outcomes with competing treatments, based on published information from similarly designed studies, after adjusting for differences in the characteristics of the populations.
- *in other words*: individual patient data (IPD) in one or more trials are used to adjust for between-trial differences in the distribution of variables that influence outcome
- "anchored" indirect comparison (common comparator arm in each trial) Vs "unanchored" indirect comparison (disconnected treatment network or single-arm studies)
 - an unanchored MAIC or STC assumes that all effect modifiers and prognostic factors are accounted for
- unanchored methods for population adjustment are problematic and should not be used when anchored methods can be applied



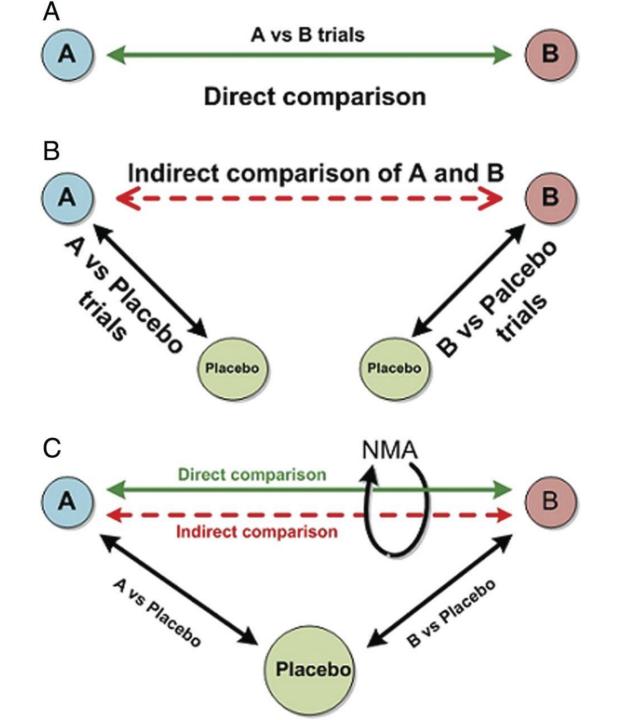
https://www.nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf.

Population-adjusted Indirect Comparisons

Matching-Adjusted Indirect Comparison (MAIC) and Simulated Treatment Comparison (STC)

- MAICs and STCs use patient-level data from a trial of a given treatment (referred to as the index trial) to derive a comparison of outcomes with competing treatments, based on published information from similarly designed studies, after adjusting for differences in the characteristics of the populations.
- *in other words*: individual patient data (IPD) in one or more trials are used to adjust for between-trial differences in the distribution of variables that influence outcome
- "anchored" indirect comparison (common comparator arm in each trial) Vs "unanchored" indirect comparison (disconnected treatment network or single-arm studies)
 - an unanchored MAIC or STC assumes that all effect modifiers Anchored and prognostic factors are accounted for
- unanchored methods for population adjustment are problematic and should not be used when anchored methods can be applied

Unanchored


EGRAR DI VALPOLICELLA • 11 MAGGIO 2023 Centro Formazione IRCCS "Sacro Cuore - Don Calabria"

Network Meta-Analysis (NMA)

(M. Cinquini)

Motivation for Network Meta-Analysis

- There are often many treatments for health conditions
- Published systematic reviews and meta-analyses typically focus on pair-wise comparisons
- An alternative approach would involve extending the standard meta-analysis techniques to accommodate multiple treatment
- This emerging field has been described as both network meta-analysis and mixed treatment comparisons

Network Meta-Analysis

(Multiple Treatments Meta-Analysis, Mixed Treatment Comparisons)

- Combine direct + indirect estimates of multiple treatment effects
- Internally consistent set of estimates that respects randomization
- Estimate effect of each intervention relative to every other whether or not there is direct comparison in studies
- Calculate probability that each treatment is most effective
- Compared to conventional pair-wise meta-analysis:
 - Greater precision in summary estimates
 - Ranking of treatments according to effectiveness

Indirect Comparisons of Multiple Treatments – Network Meta-Analysis

Trial			•
1	А	В	
2	А	В	
3		В	
4		B	
5	А		
6	А		
7	А	В	

С

С

С

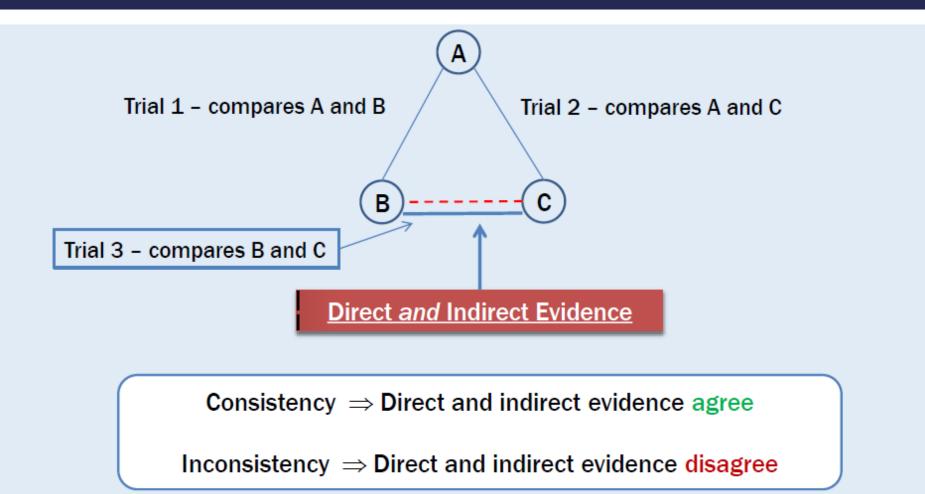
С

С

Want to compare A vs. B
 Direct evidence from trials 1, 2 and 7
 Indirect evidence from trials 3, 4, 5, 6 and 7

- Combining all "A" arms and comparing with all "B" arms destroys randomization
- Use indirect evidence of A vs. C and B vs. C comparisons as additional evidence to preserve randomization and within-study comparison

Indirect Comparisons

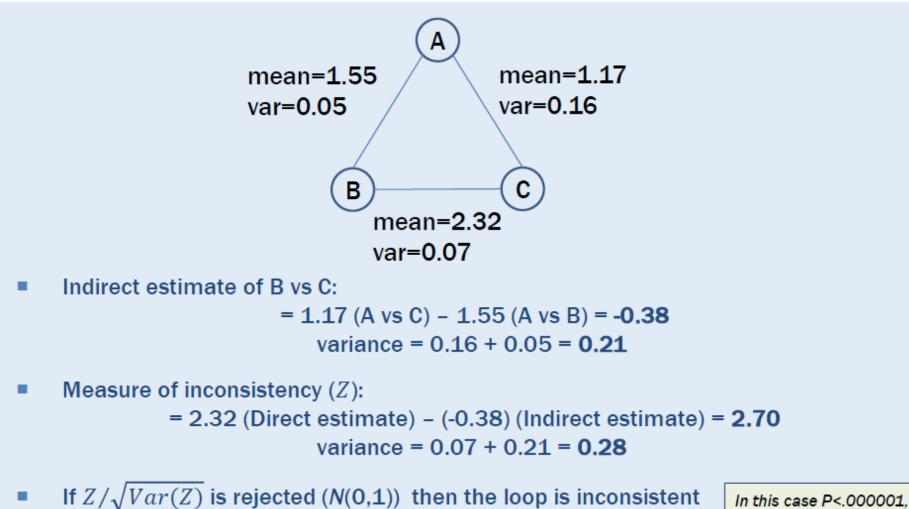

Basic assumptions underlying indirect comparisons include:

- homogeneity assumption for standard meta-analysis,
- similarity assumption for adjusted indirect comparison and
- consistency assumption for the combination of direct and indirect evidence. It is essential to fully understand and appreciate these basic assumptions in order to use adjusted indirect and mixed treatment comparisons appropriately.

CONSISTENCY ASSUMPTION

- When both direct and indirect evidence is available, an assumption of evidence consistency is required to quantitatively combine the direct and indirect estimates.
- It is important to investigate possible causes of discrepancy between the direct and indirect evidence, such as the play of chance, invalid indirect comparison, bias in head-to-head comparative trials, and clinically meaningful heterogeneity
- When the direct comparison differs from the adjusted indirect comparison, we should usually give more credibility to evidence from head-to-head comparative trials. However, evidence from direct comparative trials may not always be valid.

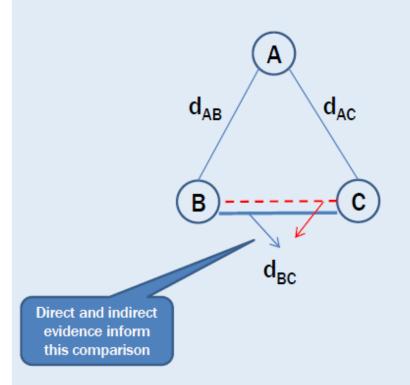
THERE ARE 2 TYPES OF TRIAL EVIDENCE

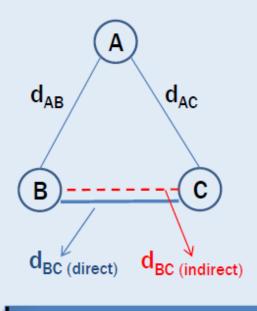

Differing effect modifiers among the trials can cause inconsistency

METHODS TO TEST FOR INCONSISTENCY

1. Bucher method

- Can be used on triangle structures where three direct estimates are available
- All such "triangles" should be evaluated one by one
- 2. Node-splitting
 - Direct and indirect studies are separated and a difference in estimates is calculated
 - Repeated for all treatment comparisons where inconsistency is possible
- 3. Inconsistency model
 - Could be considered "independence" model because all treatment comparisons are estimated independently
 - Treatment effects are not estimated relative to a reference treatment

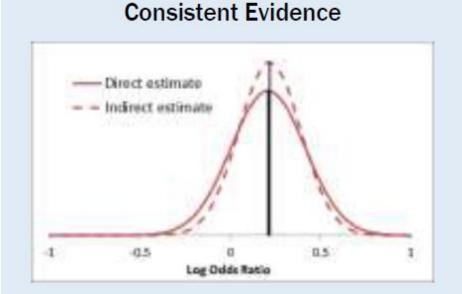

#1 BUCHER METHOD ILLUSTRATION


indicating inconsistency

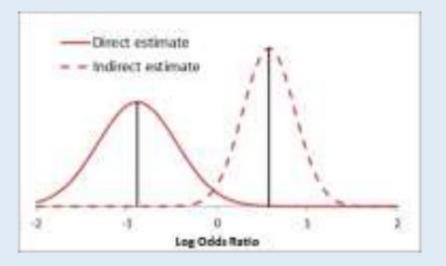
#2 NODE-SPLITTING

Full NMA estimates 3 parameters

Node-splitting estimates separate parameters for direct and indirect evidence

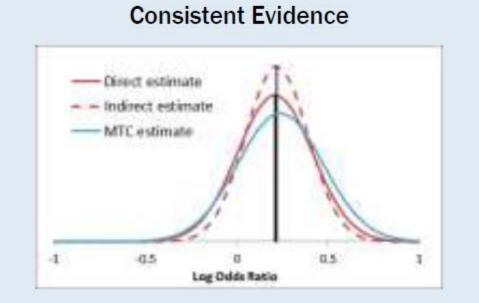


 $\begin{array}{l} \text{Inconsistency is present if} \\ \textbf{d}_{\text{BC (direct)}} \neq \textbf{d}_{\text{BC (indirect)}} \end{array}$

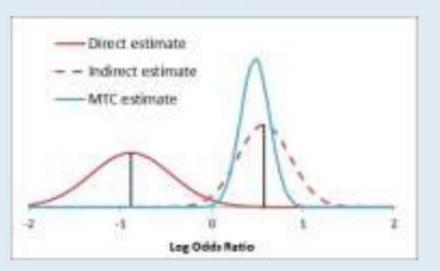

Dias, S, Welton, N, Caldwell, D & Ades, A 2010, 'Checking consistency in mixed treatment comparison meta-analysis'. Statistics in Medicine, vol 29., pp. 932 - 944

#2 NODE-SPLITTING

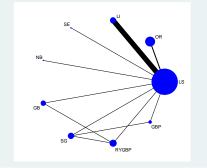
Example of posterior distributions with direct and indirect evidence


Posterior densities overlap indicating absence of inconsistency Inconsistent Evidence

Posterior densities hardly overlap indicating presence of inconsistency


#2 NODE-SPLITTING

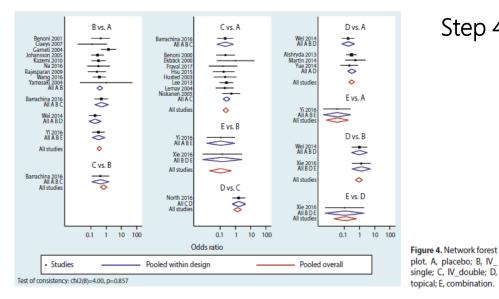
What do we do with this information?


MTC estimate is similar to direct and indirect estimates

Inconsistent Evidence

MTC estimate is closer to indirect estimate, possibly because indirect trials are larger and more precise

Step 1: generating network geometry



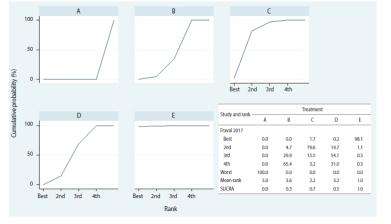
Step 3: creating plots and league table of effect size by treatment

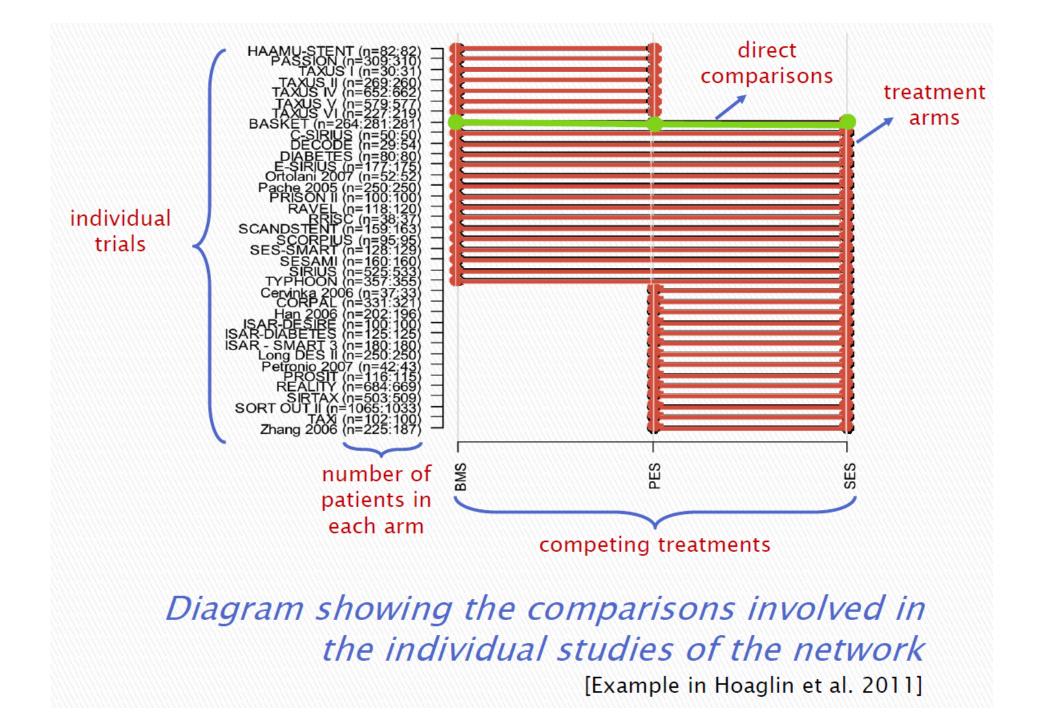
Table 1. Inconsistency test between direct and indirect treatment comparisons in mixed treatment comparison

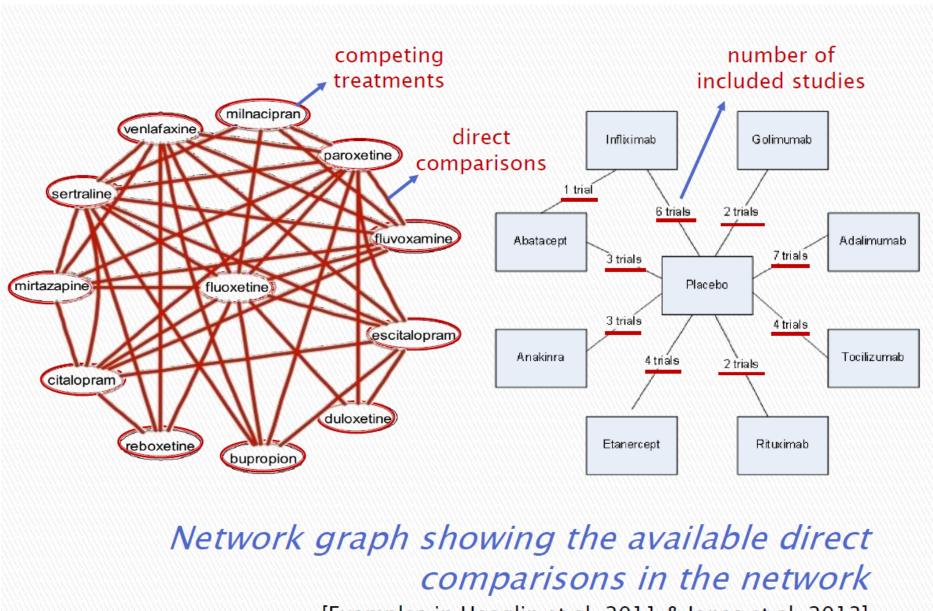
Side	Dire	ct	India	ect	Differe		
	Coefficient	SE	Coefficient	SE	Coefficient	SE	- p>z
AB	-1.083	0.174	-0.877	0.620	-0.206	0.636	0.746
AC	-1.388	0.247	-1.869	0.493	0.481	0.542	0.375
AD	-1.378	0.265	-0.738	0.413	-0.640	0.479	0.182
AE	-3.425	0.940	-3.221	1.005	-0.204	0.937	0.828
BC	-0.894	0.655	-0.312	0.297	-0.581	0.715	0.416
BD	0.099	0.462	-0.241	0.329	0.340	0.567	0.548
BE	-2.152	0.881	-2.615	1.087	0.463	0.896	0.605
CD	0.490	0.492	0.177	0.350	0.313	0.604	0.605
DE	-2.550	1.254	-1.956	0.958	-0.595	1.314	0.651

SE, standard error; A, placebo; B, IV_single; C, IV_double; D, topical; E, combination.

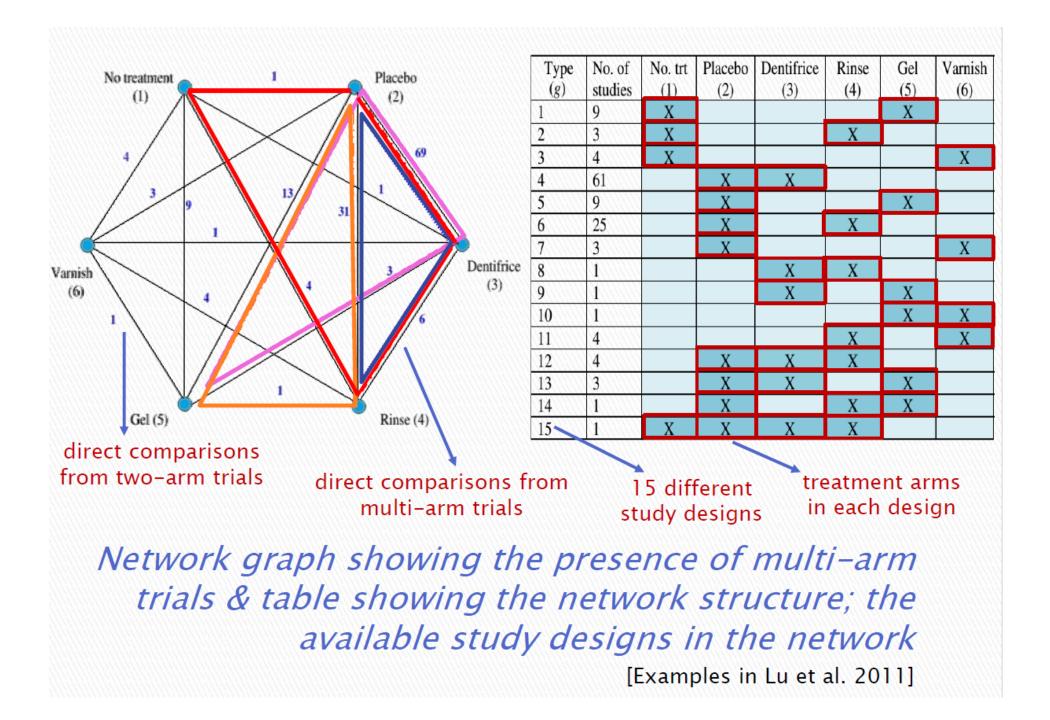
Step 4: determining relative rankings of treatment

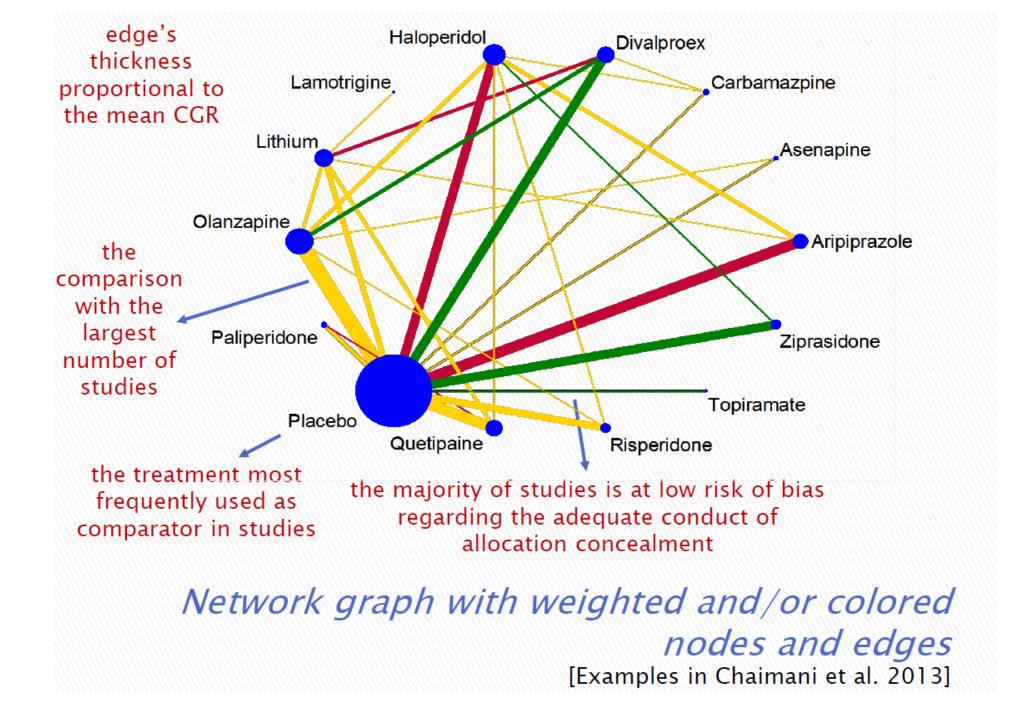


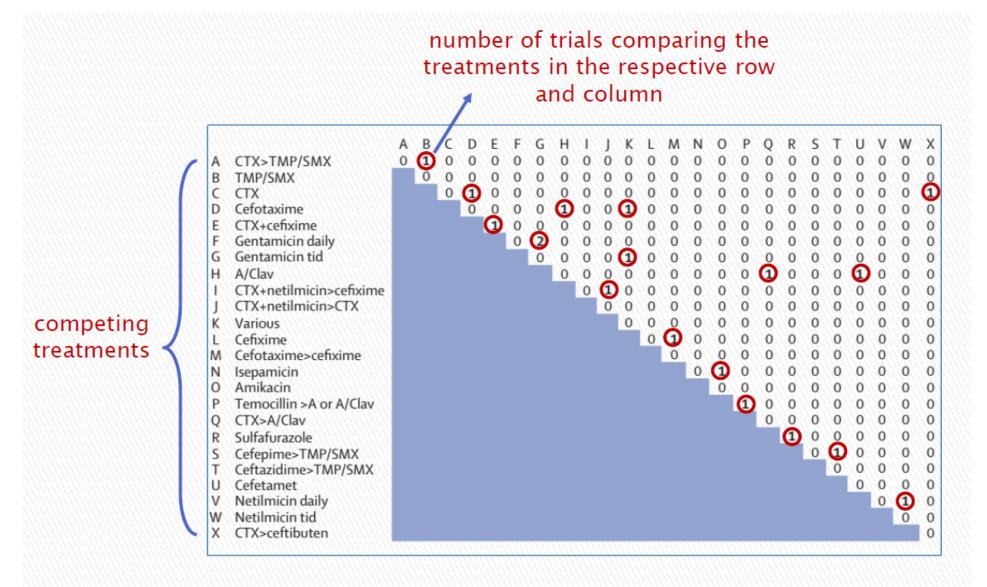

Figure 6. Results of network rank test. A, placebo; B, IV_single; C, IV_double; D, topical; E, combination; SCURA, surface under the cumulative ranking.

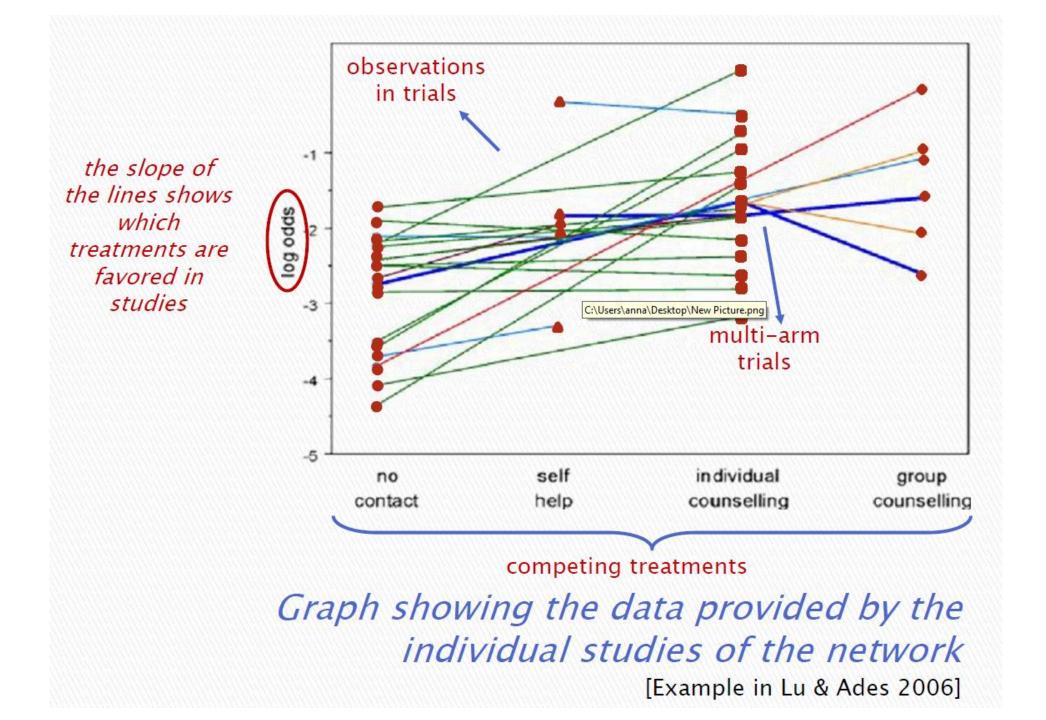

Step	2:	testing	for	inconsistency
				·····

C

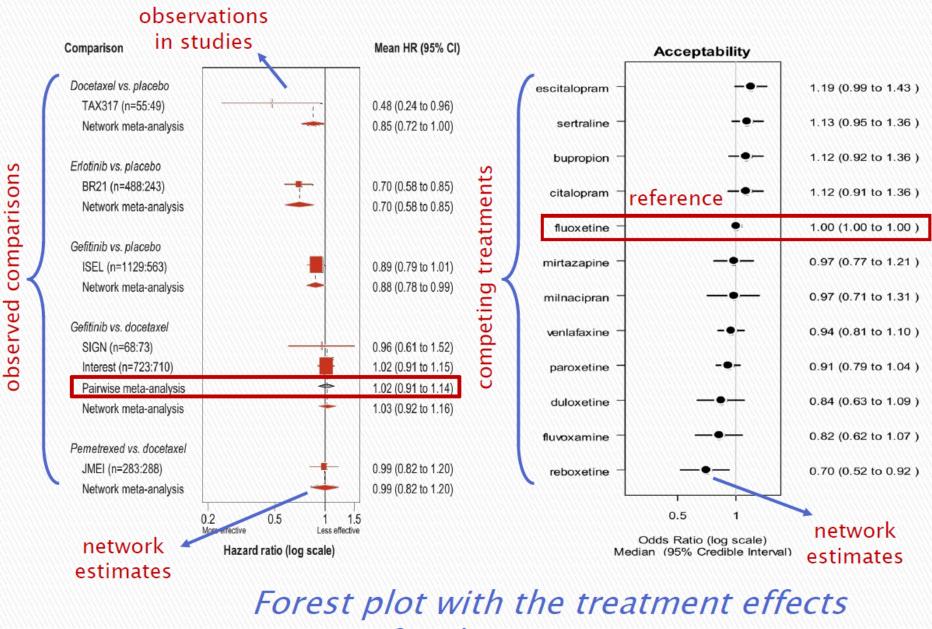

Method = reml				Number	of dimensions	-	4
Restricted log	; likelihood =	-30.939719		Number	of observation	s =	25
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interva	1]
_y_B							
des_ABC	.2528377	.5704516	0.44	0.658	8652269	1.3709	02
des_ABD	7433714	.5269164	-1.41	0.158	-1.776108	.28936	57
des_ABE	1959024	.5311986	-0.37	0.712	-1.237033	.84522	78
_cons	9727775	.2201655	-4.42	0.000	-1.404294	54126	11
_y_c							_
des_AC	.217719	.6845858	0.32	0.750	-1.124045	1.5594	83
_cons	-1.58294	. 6293945	-2.52	0.012	-2.816531	34934	98
y_D							_
des AD	.5489224	.5775957	0.95	0.342	5831443	1.6809	89
des_BDE	1.020097	.9029483	1.13	0.259	7496496	2.7898	43
des_CD	. 633251	.9312281	0.68	0.496	-1.191923	2.4584	2:
_cons	-1.72662	.4786004	-3.61	0.000	-2.66466	78858	06
_y_E							_
des_BDE	.4401131	1.862385	0.24	0.813	-3.210095	4.0903	21
_cons	-3.402272	1.051331	-3.24	0.001	-5.462844	-1.34	17
Estimated betw							
_y_B 1.767e-0		_v_c	_×	_D	_Y_E		
_y_C 1.767e-0	.5	1					
_y_D 1.767e-0		.5		1			
_y_E 1.767e-0		. 5		.5	1		
Testing for in	consistancy						
	tes_ABC = 0						
(2) [_y_B]c							
	ies_ABE = 0						
	tes_AC = 0						
	tes AD = 0						
(6) [_y_D]d	tes_BDE = 0						
	tes_BDE = 0						
(8) [_y_D]	ies_CD = 0						
chi	12(8) = 4						
Prob	> chi2 = 0	.8567					


Presenting the data

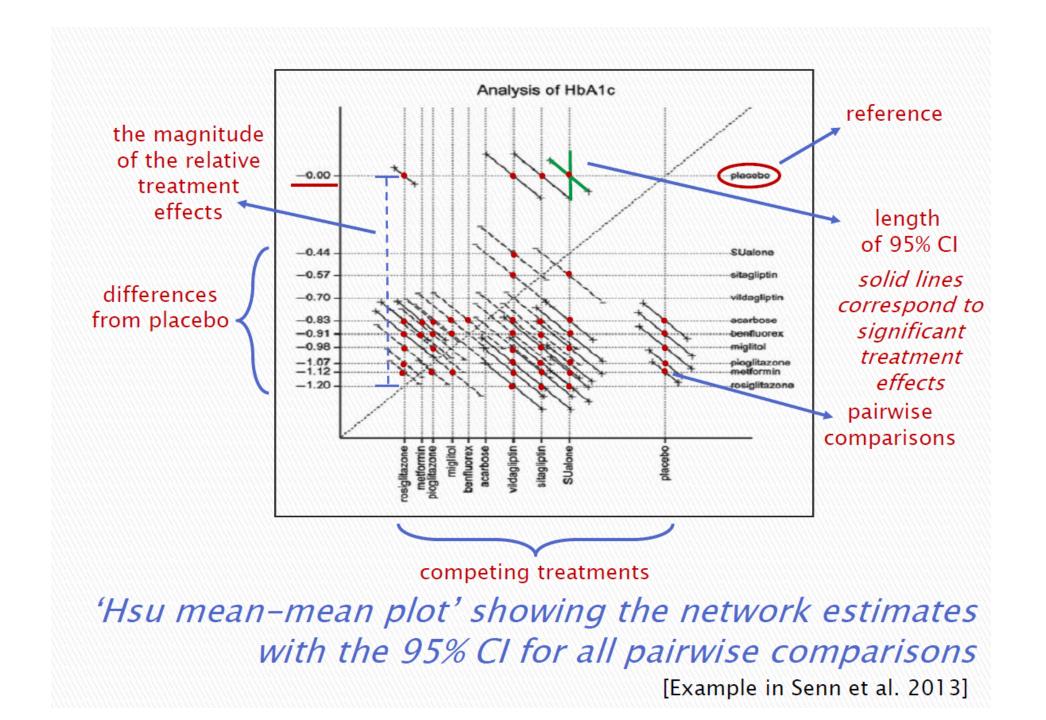


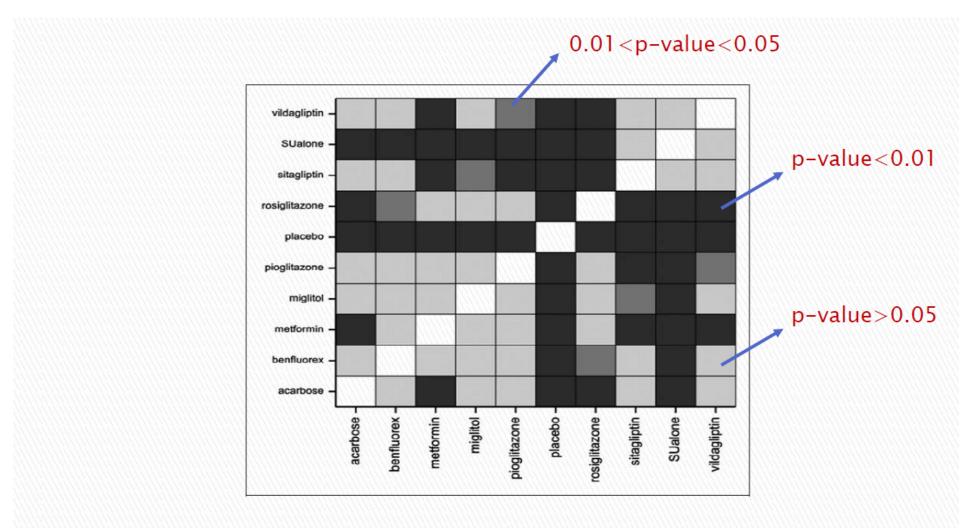

[Examples in Hoaglin et al. 2011 & Jonas et al. 2013]

Matrix showing the available direct comparisons in the network [Example in Ioannidis 2006]

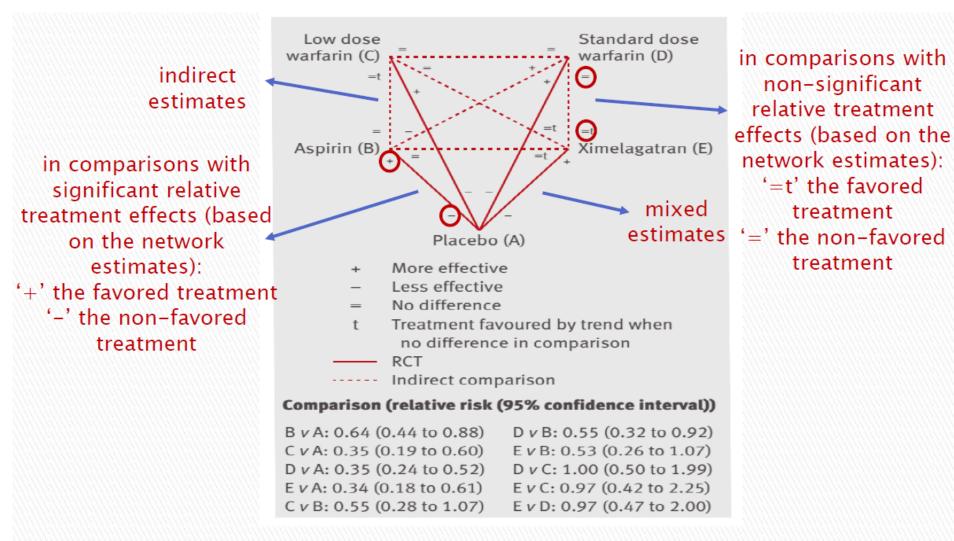

Presenting the results measures of effect

column efficacy treatment in for effects treatment Φ ž favor relative 0 SMD.


1.40 0.81 1.11 1.16 0.86 1.16 0-69 0.85 0-48 HAL 1.491.32 0.93 0.56 (0.93 to 2.11) (1-03 to 2-15) (0.36 to 1.36) (0.62 to 1.15) (0-34 to 0-93) (0.53 to 1.22) (0-85 to 2-06) (075 to 1.66) (0-63 to 2-14) (0.46 to 1.60) (0-73 to 1-86) (0-59 to 1-49) (0-16 to 1-44) -0-06 1.06 0.58 0.94 0.80 0.83 0-67 0.83 0.67 0.50 0.61 0-40 0.34 RIS (-0.22 to 0.11) (0.72 to 1.56) (0-37 to 0-88) (0.60 to 1.47) (0.51 to 1.25) (0.44 to 1.57) (0.33 to 1.16) (0.51 to 1.34) (0-41 to 1-10) (0-25 to 0-98) (0-44 to 0-83) (0-24 to 0-68) (0.11 to 1.03) -0.12 -0.07 0.88 0.75 0.78 0.58 0.78 0.63 0.38 0.32 0-54 0.47 0.57 OLZ (0-37 to 0-79) (-0-28 to 0-02) (-0.22 to 0.08) (0.58 to 1.36) (0.49 to 1.13) (0-43 to 1-44) (0-33 to 1-00) (0.52 to 1.17) (0.40 to 1.00) (0-24 to 0-89) (0-44 to 0-74) (0-23 to 0-61) (0-11 to 0-95) -0.06 1.38 0.86 0.60 -0·19 -0.13 1.63 1.44 1-07 1.441.15 1-05 0.70 LIT (-0.36 to -0.01) (-0.30 to 0.04) (-0-22 to 0-10) (1-06 to 2-54) (0.91 to 2.12) (0-81 to 2-60) (0-57 to 2-00) (0.92 to 2.28) (0.71 to 1.91) (0.47 to 1.59) (0.78 to 1.43) (0.44 to 1.11) (0.20 to 1.77) -0.07 -0.01 0.85 0-88 0.66 0.88 0.71 0.53 0.36 -0·19 -0.13 0-64 0.43 QTP (-0-37 to -0-01) -0-24 to 0-11) (-0-18 to 0-17) (0.52 to 1.35) (0.46 to 1.70) (0.34 to 1.25) (0.53 to 1.46) (0.42 to 1.20) (0-27 to 1-05) (0.45 to 0.91) (0.25 to 0.73) (0.12 to 1.10) (-0-31 to 0-04) -0.13 -0.06 -0.01 0.00 1.04 0.77 1.05 0.84 0.62 0.76 0.43 <u>-0.19</u> 0.50 ARI (-0.36 to -0.02) (-0-31 to 0-05) (-0.23 to 0.11) (-0.18 to 0.17) (-0-19 to 0-20) (0.55 to 1.98) (0-41 to 1-47) (0.64 to 1.70) (0.51 to 1.39 (0-32 to 1-24) (0-55 to 1-06) (0-30 to 0-85) (0-14 to 1-29) <u>-0.20</u> -0.14 -0.02 -0.02 -0.01 -0.01 0.74 1.00 0.80 0.60 0.73 0-48 0-41 CBZ (-0.28 to 0.24) (-0-29 to 0-26) (0-34 to 1-62) (0.52 to 1.91) (0.27 to 1.33) (-0.36 to -0.01) (-0-42 to 0-12) (-0.34 to 0.18) (-0.30 to 0.26) (0-41 to 1-59) (0-42 to 1-28) (0-25 to 0-96) (0.13 to 1.37) -0.20 -0.14-0.08 -0.07 -0.07 -0.06 1.35 1-08 0.81 0.98 0.65 0.56 -0.26 ASE -0.52 to -0.01) -0.46 to 0.05 -0.36 to 0.10 (-0-41 to 0-27) (-0-34 to 0-20) (-0-34 to 0-20) (-0.39 to 0.28 (0.71 to 2.58) (0.56 to 2.14) (0.36 to 1.83) (0.57 to 1.72) (0.33 to 1.30) (0.17 to 1.82) 0.80 0.60 -0.10 0.73 0.41 -0.36 -0-30 -0·23 -0-10 -0.17 -0.17 -0.15 VAL 0-48 (-0.56 to -0.15) (-0.50 to -0.10 (-0.41 to 0.23) (-0-38 to 0-05) (-0-38 to 0-05) (-0.44 to 0.13) (-0.37 to 0.18) (0-47 to 1-37) (0.30 to 1.20) (0.51 to 1.05) (0-28 to 0-83) (0.13 to 1.25) (-0-40 to -0-06) -0.31 -0.15 -0.17 -0.18 -0.16 -0.10 -0-01 0.75 0.91 0.61 0.52 -0.36 -0-24 ZIP (-0.56 to -0.15 0.51 to -0.1 0-43 to -0-03 (-0-44 to 0-16 (-0-39 to 0-05) (-0-39 to 0-04) (-0-45 to 0-14) (-0.39 to 0.18) -0.24 to 0.23 (0-37 to 1-51) (0.61 to 1.34) (0 34 to 1 06) (0 17 to 1 58) -0-48 -0-43 -0-36 -0-32 -0.29 -0.29 -0.28 -0.22 -0.13 -0.12 1.22 0.81 0.69 LAM (-0.43 to 0.19) (-0-58 to 0-00) (-058 to 0.00) (-0.63 to 0.08) (0.67 to 2.21) -0.77 to -0.19 -0.71 to -0.1)-64 to -0-0 (-0.67 to 0.06) (-0.57 to 0.12) (-0.43 to 0.18) (0-40 to 1-65) (0-21 to 2-30) 0.66 0.57 -0.56 -0-50 -0-43 -0-37 -0.37 -0.37 -0.36 -0-30 -0.20 -0.20 -0-08 PBO (-0-69 to -0-43) (-0-63 to -0-38) -0-54 to -0-32 -0-63 to -0-11) -0.51 to -0.23) -0.51 to -0.23) -0-60 to -0-11) -0.53 to -0.07 -0-37 to -0-04 -0-37 to -0-03) (-0-34 to 0-18) 0-44 to 1-00) (0-20 to 1-62) -0.15 0-85 -0.63 -0-58 -0.51 -0.45 -0.44-0.45 -0.43 -0-38 -0.28 -0.27 TOP 0-72 to -0 -0-46 to 0-15) (-0.24 0.09) (0-28 to 2-63) -51 to -0--0-83 -0.76 -0.70 -0-69 -0-68 -0-62 -0.53 -0.52 -0-40 -0.32 -0.25 -0-88 -0.69 GBT 1-17 to -0-07 -1.05 to 0.01 (-1-05 to 0-01) (-0.96 to 0.16) (-0-82 to 0-3 (-0.77 to 0.28 Efficacy (SMD with 95% Crl) Dropout rate (OR with 95% Crl)

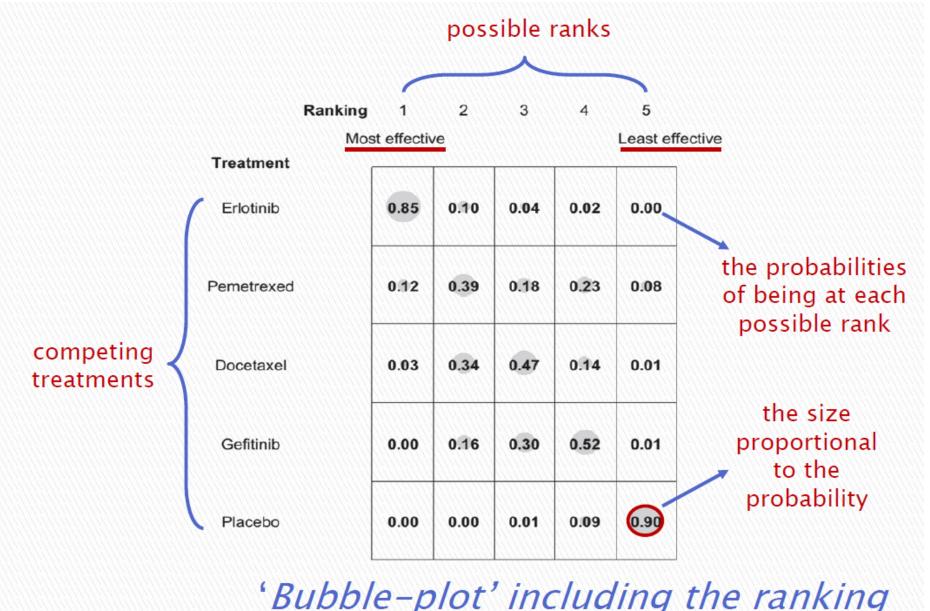

significant effects are in bold and competing treatments underscored font Table showing all the pairwise relative treatment effects with their 95% CI for one or two outcomes [Example in Cipriani et al. 2011]

dropout rate column for treatment effects the treatment favor ---relative OR>

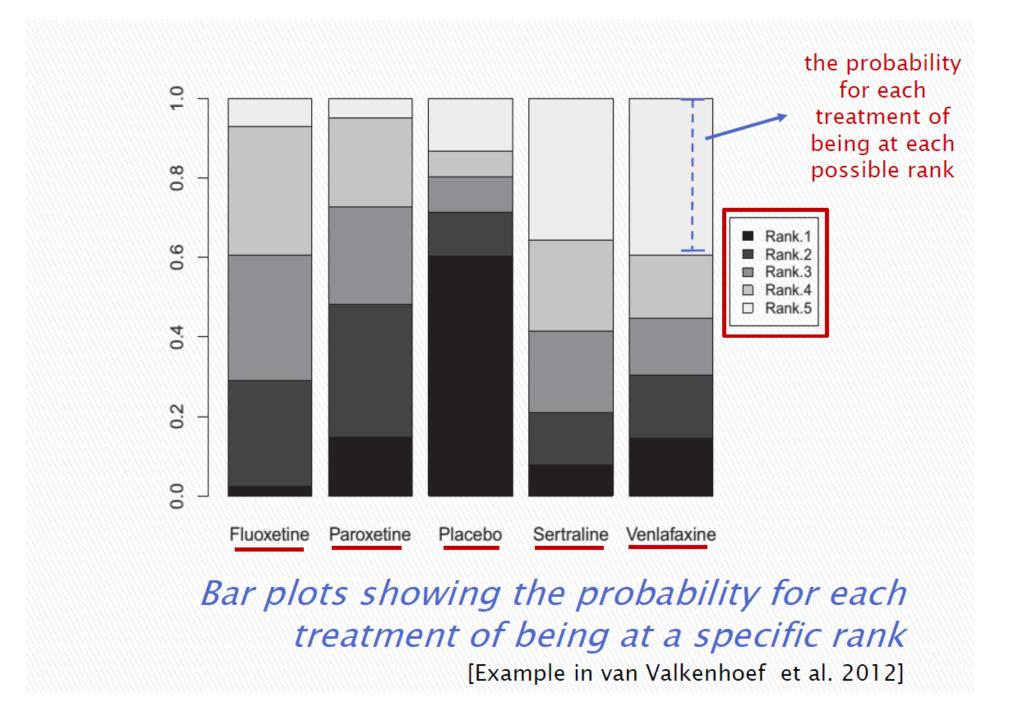


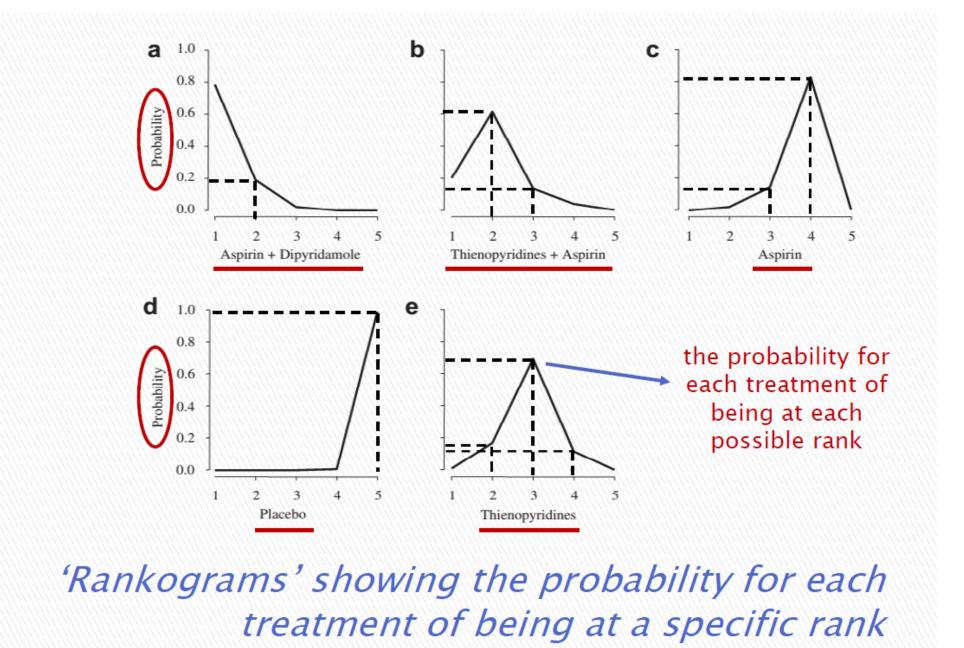
estimates for the pairwise comparisons [Examples in Hawkins et al. 2009 & Hoaglin et al. 2011]

Shade plot showing the p-values of the treatment effects for all pairwise comparisons in the network [Example in Senn et al. 2013]

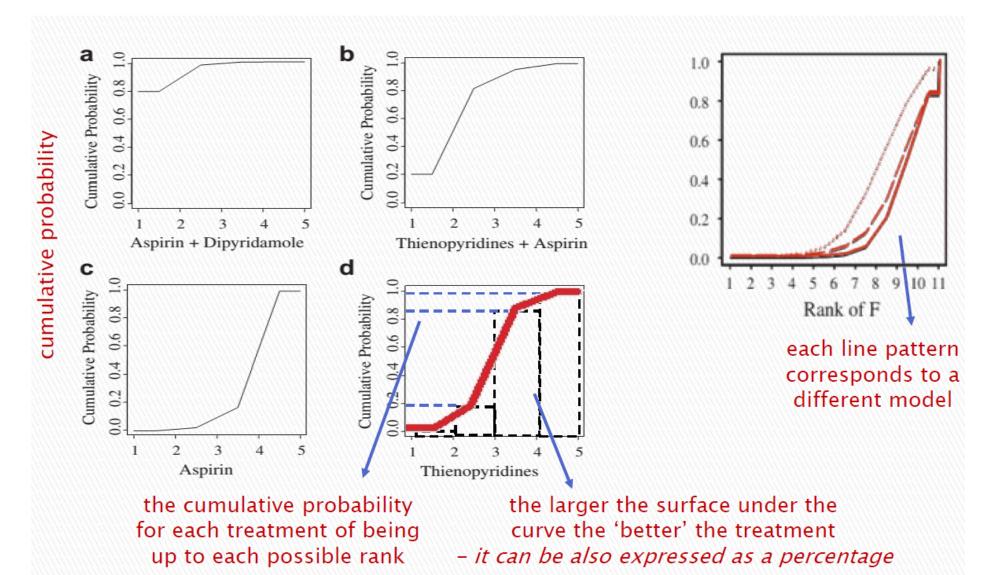


Network graph presenting the relative treatment effects for each pairwise comparison [Example in Fadda et al. 2011]

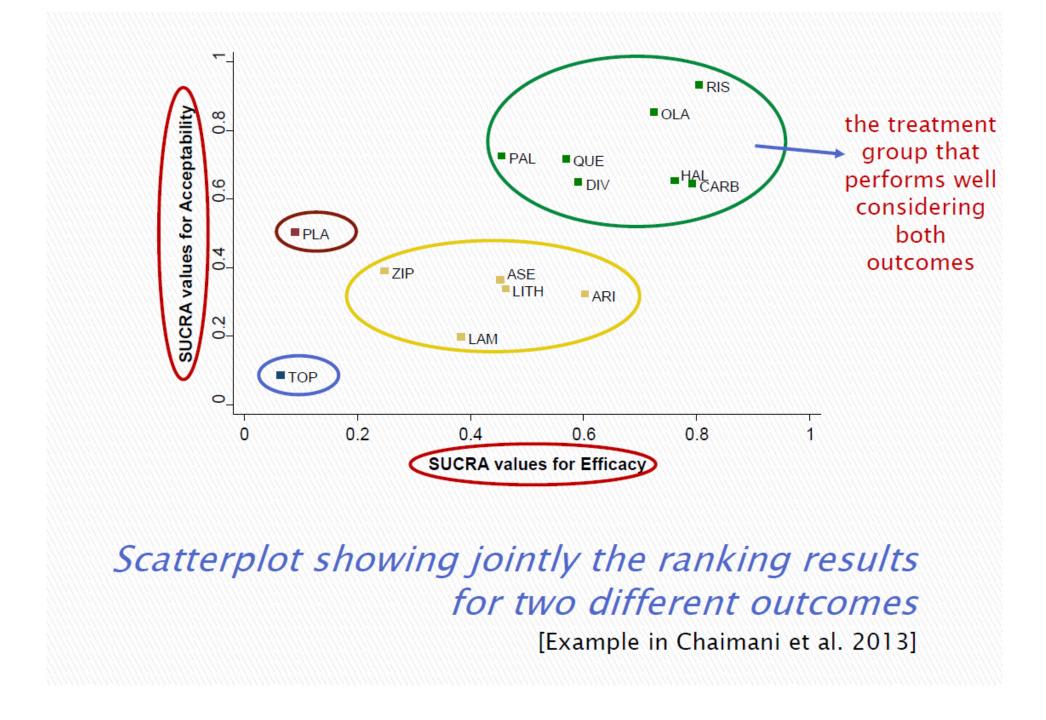

Presenting the results ranking


- Using probability of being the best
- Using probabilities of being at each possible rank

• Using SUCRAS



Bubble-plot' including the ranking probabilities for all treatments [Example in Hawkins et al. 2009]



[Example in Salanti et al. 2011]

'SUCRA plots' showing the cumulative probability for each treatment of being up to a specific rank [Examples in Salanti et al. 2011 & Salanti et al. 2010]

HAL		<u>1-49</u>	0-81	1-32	1·11	1·16	0-86	1·16	0-93	0-69	0-85	<u>0-56</u>	0-48
0.95/0		(1-03 to 2-15)	(0-53 to 1-22)	(0-85 to 2-06)	(0·75 to 1·66)	(0·63 to 2·14)	(0-46 to 1-60)	(0·73 to 1·86)	(0-59 to 1-49)	(0-36 to 1-36)	(0-62 to 1-15)	(0-34 to 0-93)	(0-16 to 1-44)
-0-06	RIS	78 ⁶ 1-56)	<u>0-58</u>	0-94	0-80	0-83	0-62	0-83	0-67	<u>0-50</u>	<u>0-61</u>	<u>0-40</u>	0-34
(-0-22 to 0-11)	0.94/0.		(0-37 to 0-88)	(0-60 to 1-47)	(0-51 to 1-25)	(0-44 to 1-57)	(0-33 to 1-16)	(0-51 to 1-34)	(0-41 to 1-10)	(0-25 to 0-98)	(0-44 to 0-83)	(0-24 to 0-68)	(0-11 to 1-03)
-0·12	-0-07	OLZ	81 <u>00-79)</u>	0-88	0-75	0-78	0-58	0-78	0-63	<u>0-47</u>	<u>0-57</u>	<u>0-38</u>	<u>0-32</u>
(-0·28 to 0·02)	(-0-22 to 0-08	0.78/0.		(0-58 to 1-36)	(0-49 to 1-13)	(0-43 to 1-44)	(0-33 to 1-00)	(0-52 to 1-17)	(0-40 to 1-00)	(0-24 to 0-89)	(<u>0-44 to 0-74</u>)	(0-23 to 0-61)	(0-11 to 0-95
<u>-0-19</u>	-0·13	-0·06	LIT		1-38	1-44	1-07	1-44	1-15	0-86	1-05	0-70	0-60
-0-36 to -0-01)	(-0·30 to 0·04)	(-0·22 to 0·10	0.64/0.2		(0-91 to 2-12)	(0-81 to 2-60)	(0-57 to 2-00)	(0-92 to 2-28)	(0-71 to 1-91)	(0-47 to 1-59)	(0-78 to 1-43)	(0-44 to 1-11)	(0-20 to 1-77)
<u>-0-19</u>	-0-13	-0-07	-0-01	QTP		0-88	0-66	0-88	0-71	0-53	<u>0-64</u>	<u>0-43</u>	0-36
-0-37 to -0-01)	(-0-31 to 0-04)	(-0-24 to 0-11)	(-0-18 to 0-17	0.64/0.7		(0-46 to 1-70)	(0-34 to 1-25)	(0-53 to 1-46)	(0-42 to 1-20)	(0-27 to 1-05)	(0-45 to 0-91)	(0-25 to 0-73)	(0-12 to 1-10)
<u>-0-19</u>	-0·13	-0.06	-0-01	0-00	ARI	1-04	0-77	1-05	0-84	0-62	0-76	<u>0-50</u>	0-43
-0-36 to -0-02)	(-0·31 to 0·05)	(-0.23 to 0.11)	(-0-18 to 0-17)	(-0-19 to 0-2	0.61/0.5	T to 1-98)	(0-41 to 1-47)	(0-64 to 1-70)	(0-51 to 1-39	(0-32 to 1-24)	(0-55 to 1-06)	(0-30 to 0-85)	(0-14 to 1-29)
<u>-0-20</u>	-0-14	-0-08	-0-02	-0-01	-0-01	CBZ		1-00	0-80	0-60	0-73	<u>0-48</u>	0-41
-0-36 to -0-01)	(-0-42 to 0-12)	(-0-34 to 0-18)	(-0-28 to 0-24)	(-0-30 to 0-26)	(-0-29 to 0-	0.60/0.60		(0-52 to 1-91)	(0-41 to 1-59)	(0-27 to 1-33)	(0-42 to 1-28)	(0-25 to 0-96)	(0-13 to 1-37)
<u>-0-26</u>	-0-20	-0-14	-0-08	-0-07	-0-07	-0-06	ASE		1-08	0-81	0-98	0-65	0-56
-0-52 to -0-01)	(-0-46 to 0-05)	(-0-36 to 0-10)	(-0-41 to 0-27)	(-0-34 to 0-20)	(-0-34 to 0-20)	(-0-39 to 0	0.55/0.36		(0-56 to 2-14)	(0-36 to 1-83)	(0-57 to 1-72)	(0-33 to 1-30)	(0-17 to 1-82)
-0-36	<u>-0-30</u>	<u>-0-23</u>	-0-10	-0-17	-0-17	-0·15	-0-10	VAL	0-80	0-60	0-73	<u>0-48</u>	0-41
-0-56 to -0-15)	(-0-50 to -0-10)	(-0-40 to -0-06)	(-0-41 to 0-23)	(-0-38 to 0-05)	(-0-38 to 0-05)	(-0·44 to 0·13)	(-0-37 to ().50/0.48	-47 to 1-37)	(0-30 to 1-20)	(0-51 to 1-05)	(0-28 to 0-83)	(0-13 to 1-25)
<u>-0-36</u>	<u>-0-31</u>	<u>-0-24</u>	-0-15	-0-17	-0-18	-0-16	-0-10	-0-0	ZIP	0-75	0-91	0-61	0-52
-0-56 to -0-15)	(-0-51 to -0-10)	(-0-43 to -0-03)	(-0-44 to 0-16)	(-0-39 to 0-05)	(-0-39 to 0-04)	(-0-45 to 0-14)	(-0-39 to 0-18)	(-0-24 to 0	.47/0.41	0-37 to 1-51)	(0-61 to 1-34)	(0 34 to 106)	(0 17 to 1 58)
<u>-0-48</u>	<u>-0-43</u>	<u>-0-36</u>	-0-32	-0-29	-0-29	-0-28	-0-22	-0-13	-0-1	LAM	1-22	0-81	0-69
-0-77 to -0-19)	(-0-71 to -0-14)	(-0-64 to -0-08)	(-0-67 to 0-06)	(-0-58 to 0-00)	(-0-58 to 0-00)	(-0-63 to 0-08)	(-0-57 to 0-12)	(-0-43 to 0-18)	(-0-43 to 0	.40/0.21	0-67 to 2-21)	(0-40 to 1-65)	(0-21 to 2-30)
<u>-0-56</u>	<u>-0-50</u>	<u>-0-43</u>	<u>-0-37</u>	<u>-0-37</u>	<u>-0-37</u>	<u>-0-36</u>	<u>-0-30</u>	<u>-0-20</u>	<u>-0-20</u>	-0-0	PBO	0-66	0-57
-0-69 to -0-43)	(-0-63 to -0-38)	(-0-54 to -0-32)	(-0-63 to -0-11)	(-0-51 to -0-23)	(-0-51 to -0-23)	(-0-60 to -0-11)	(<u>-0-53 to -0-07</u>)	(-0-37 to -0-04)	(-0-37 to -0-03)	(-0-34 tc 0	.36/0.30	0-44 to 1-00)	(0-20 to 1-62)
<u>-0-63</u>	<u>-0-58</u>	<u>-0-51</u>	<u>-0:45</u>	<u>-0-44</u>	<u>-0-45</u>	<u>-0-43</u>	<u>-0-38</u>	<u>-0-28</u>	<u>-0-27</u>	-0-15	-0	TOP	0-85
-0-84 to -0-43)	(-0-78 to -0-37)	(-0-70 to -0-31)	(-0:75 to -0:14)	(-0-66 to -0-23)	(-0-66 to -0-23)	(-0-72 to -0-14)	(-0-66 to -0-09)	(-0-52 to -0-04)	(-0-51 to -0-04)	(-0-46 to 0-15)	(-0-241 0.)	23/0.09	(0-28 to 2-63
<u>-0-88</u>	<u>-0-83</u>	<u>-0.76</u>	<u>-0.70</u>	<u>-0-69</u>	<u>-0-69</u>	<u>-0-68</u>	<u>-0-62</u>	-0-53	-0-52	-0-40	-0-32	-0	GBT
-1-40 to -0-36)	(-1-34 to -0-31)	(-1.27 to -0.24)	(-1.21 to -0.18)	(-1-21 to -0-17)	(-1-21 to -0-17)	(-1-23 to -0-12)	(-1-17 to -0-07)	(-1-05 to 0-01)	(-1-05 to 0-01)	(-0-96 to 0-16)	(-0-82 to 0-18)	(-0-77 0.1	3/0.12

competing treatments ordered according to their relative ranking for efficacy

Table showing all the pairwise relative treatment effects with their 95% CI for one or two outcomes along with the SUCRA values

Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis (Review)

Palmer SC, Saglimbene V, Mavridis D, Salanti G, Craig JC, Tonelli M, Wiebe N, Strippoli GFM

Copyright © 2014 The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd.

OBJECTIVES

To compare the efficacy and safety of ESAs (epoetin alfa, epoetin beta, darbepoetin alfa, or methoxy polyethylene glycol-epoetin beta, and biosimilar ESAs, against each other, placebo, or no treatment) to treat anaemia in adults with CKD.

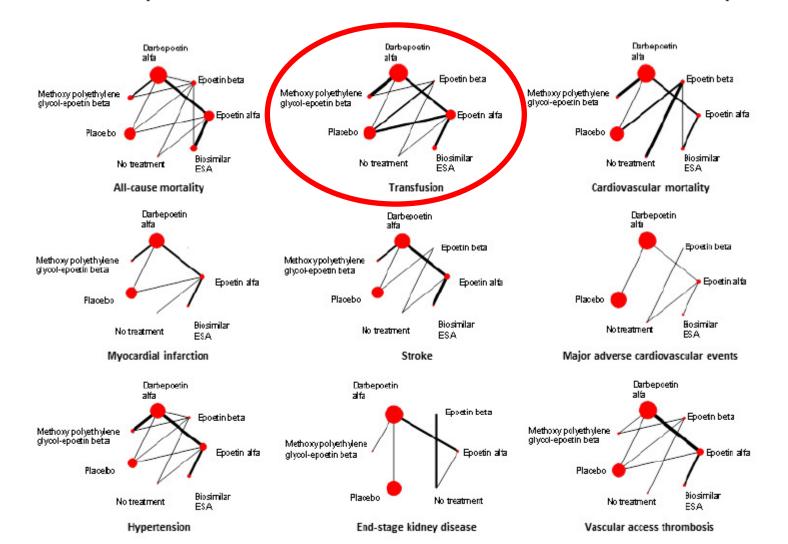


Figure 5. Networks of the treatment efficacy and safety of ESA drugs in the treatment of anaemia in chronic kidney disease. Values lower than 1 favour the active treatment in the comparison

Assessment of clinical and methodological

Analysis I.I. Comparison I ESA versus ESA or placebo/no treatment, Outco

Review: Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis

Comparison: I ESA versus ESA or placebo/no treatment

Outcome: I Blood transfusion

Study or subgroup	Intervention	Comparator	Odds Ratio M-	,
	n/N	n/N	H,Random,95% Cl	
I Epoetín alfa versus placebo				
Kleinman 1989	0/7	3/7	·	
Canadian EPO Study 1990	2/67	23/32	- -	
Roth 1994	4/43	9/40		
Subtotal (95% CI)	117	79	-	100
Total events: 6 (Intervention), 35	(Comparator)			
Heterogeneity: Tau ² = 3.61; Chi ²	= 10.53, df = 2 (P =	0.01); I ² =81%		
Test for overall effect: $Z = 2.10$ (P = 0.036)			
2 Epoetín beta versus placebo				
Bennett 1991	0/90	1/41		
Bahlmann 1991	5/53	28/46		
Subtotal (95% CI)	143	87	•	100
Total events: 5 (Intervention), 29	(Comparator)			
Heterogeneity: Tau ² = 0.0, Chi ² :	= 0.21, df = 1 (P = 0.6	54); l² =0.0%		
Test for overall effect: Z = 4.95 (P < 0.00001)			
3 Darbepoetin alfa versus placeb	0			
TREAT Study 2005	297/2012	496/2026	+	1
			0.001 0.01 0.1 1 10 100 1	000

Comparator

n/N

4/162

10/153

39/245

606

Favours intervention Favours comparator

Odds Ratio

ĊI ----

M-H,Random,95%

-:!						(Continued)
gical	Study or subgroup	Intervention	Comparator	Odds Ratio M-	Weight	Odds Ratio M-
		n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Outcom	Subtotal (95% CI)	2012	2026	•	100.0 %	0.53 [0.46, 0.63]
ysis	Total events: 297 (Intervention), 496 (Heterogeneity: not applicable	Comparator)				
	Test for overall effect: $Z = 7.71$ (P < 0	.00001)				
	4 Epoetín alfa versus control					
	Patel 2012	4/118	0/39		100.0 %	3.10 [0.16, 58.97]
	Subtotal (95% CI)	118	39		100.0 %	3.10 [0.16, 58.97]
Weig	Total events: 4 (Intervention), 0 (Com	parator)				
	Heterogeneity: not applicable Test for overall effect: Z = 0.75 (P = 0	45)				
	5 Epoetín beta versus no control	(, , , , , , , , , , , , , , , , , , ,				
24.9	Van Biesen 2005	2/22	4/18		100.0 %	0.35 [0.06, 2.18]
	Subtotal (95% CI)	22	18	-	100.0 %	0.35 [0.06, 2.18]
36.4	Total events: 2 (Intervention), 4 (Com	parator)				
38.7	Heterogeneity: not applicable					
100.0 9	Test for overall effect: Z = 1.12 (P = 0	.26)				
10010	6 Epoetin alfa versus darbepoetin alfa Akizawa 2011	0/160	1/161		2.8 %	0.33 [0.01, 8.24]
	Locatelli 2001	3/37	6/129		14.2 %	1.81 [0.43, 7.61]
				_		
	Nissenson 2002	37/335	17/369		82.9 %	2.57 [1.42, 4.66]
10.4	Subtotal (95% CI)	532	659	•	100.0 %	2.31 [1.34, 3.97]
89.6	Total events: 40 (Intervention), 24 (Co Heterogeneity: Tau ² = 0.0; Chi ² = 1.6		44), 12 -0.090			
100.0 9	Test for overall effect: $Z = 3.03$ (P = 0		-11), 1 -0.076			
100.0	7 Epoetin alfa versus biosimilar ESA					
	Krivoshiev 2010	1/230	3/232		5.5 %	0.33 [0.03, 3.23]
	Krivoshiev 2008	9/304	10/305	+	33.6 %	0.90 [0.36, 2.25]
	Martin 2007	11/192	46/560	=	60.9 %	0.68 [0.34, 1.34]
100.0	Subtotal (95% CI)	726	1097	•	100.0 %	0.72 [0.42, 1.22]
	Total events: 21 (Intervention), 59 (Co					
	Heterogeneity: Tau ² = 0.0, Chi ² = 0.7		70); l ² =0.0%			
	Test for overall effect: Z = 1.22 (P = 0 8 Epoetin beta versus methoxy polyet	-	petin beta			
	AMICUS Study 2007	2/46	7/135		100.0 %	0.83 [0.17, 4.15]
	California (DEN) (CD)	46	135	-	100.0 %	0.83 [0.17, 4.15]
		rator)				
	(Continued)					
Weight	Odds Ratio	2)				
	M- H,Random,95% Cl	ethylene glyco 0/25	I/46		4.7 %	0.59 [0.02, 15.14]
23.7 %	2.88 [0.90, 9.23]			0.001 0.01 0.1 1 10 100 1000		
25.4 %	0.48 [0.16, 1.44]			Favours intervention Favours comparator		
46.2 %	0.80 [0.48, 1.32]					(e)
100.0 %	0.94 [0.45, 1.95]					

Subtotal (95% CI) Total events: 48 (Intervention), 54 (Comparator) Heterogeneity: Tau² = 0.23; Chi² = 5.35, df = 3 (P = 0.15); l² =44%

Intervention

n/N

11/162

5/154

32/244

585

Study or subgroup

ARCTOS Study 2008

CORDATUS Study 2011

PATRONUS Study 2010

Test for overall effect: Z = 0.18 (P = 0.86)

0.001 0.01 0.1 1 10 100 1000

Favours intervention Favours comparator

Assessment of similarity (transitivity) across treatment comparisons

Evaluation of the assumption is important and its plausibility determines the validity of the network meta-analysis results.

We inferred about the assumption of transitivity:

1. We assessed whether the included interventions were similar when they were evaluated in studies with different designs, for example, whether ESAs are administered the same way in studies comparing ESAs to placebo and in those comparing ESAs to other ESAs

2. We compared the distribution of the potential effect modifiers (age, stage of CKD, duration of treatment) across the different pairwise comparisons.

The inconsistency factor is the absolute difference in the log odds ratio estimated from indirect and direct treatment comparisons and is reported together with the 95% confidence interval. A 95% confidence interval that includes zero indicates that the result is compatible with zero inconsistency between effect estimates using indirect (networkmeta-analysis) and direct (conventional pairwise meta-analysis) treatment comparisons.

Transfusion		
Epoetin alfa - epoetin beta - placebo – no treatment	2.09	0.00-6.91
Epoetin alfa - darbepoetin alfa - placebo	1.97	0.00-4.20
Epoetin beta - darbepoetin alfa – methoxy polyethylene glycol-epoetin beta - placebo	1.26	0.00-3.39

Figure 6. Forest plots for results from network meta-analyses comparing ESAs versus placebo

	Odds ratio (95%CI)	Odds ratio (95% Cl)
All-cause mortality		
Epoetin beta	0.82 (0.45-1.48)	
Placebo	Reference	þ
Darbe poet in alfa	1.06 (0.91-1.24)	•
Methoxy-polyethylene glycolle poetin beta	116 (0.74-1.82)	-
No treatment	1.22 (0.56-2.63)	
Epoetin a lfa	1.25 (0.71-2.21)	
Biosimilar ESA	1.31 (0.65-2.62)	
Transfusion		
Epoetin beta	0.09 (0.02-0.38)	
Methoxy polyethylene glycol-epoetin beta	015 (0.03-0.70)	
No treatment	0.15 (0.01-1.73)	
Darbepoetin alfa	0.17 (0.05-0.57)	
Epoetin a lfa	0.18 (0.05-0.59)	
Bios imilar ESA	0.27 (0.05-1.47)	
Placebo	Peference	ę
Cardiovascular mortality		
Epoetin beta	0.74 (013-4.28)	
Placebo	Reference	0
Darbe poet in alfa	1.05 (0.27-1.26)	•
No treatment	1.38 (0.11-18.15)	
Methoxy polyethylene glycol-epoetin beta	1.5 2 (0.69-3.34)	
Epoetin a lfa	156 (0.29-8.37)	
Bios imilar ESA	221 (0.47-16.7)	

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations

Brian Hutton, PhD, MSc; Georgia Salanti, PhD; Deborah M. Caldwell, PhD, MA, BA; Anna Chaimani, PhD; Christopher H. Schmid, PhD; Chris Cameron, MSc; John P.A. Ioannidis, MD, DSc; Sharon Straus, MD, MSc; Kristian Thorlund, PhD; Jeroen P. Jansen, PhD; Cynthia Mulrow, MD, MSc; Ferrán Catalá-López, PhD, MPH, PharmD; Peter C. Gøtzsche, MD, MSc; Kay Dickersin, PhD, MA; Isabelle Boutron, MD, PhD; Douglas G. Altman, DSc; and David Moher, PhD

The PRISMA statement is a reporting guideline designed to improve the completeness of reporting of systematic reviews and meta-analyses. Authors have used this guideline worldwide to prepare their reviews for publication. In the past, these reports typically compared 2 treatment alternatives. With the evolution of systematic reviews that compare multiple treatments, some of them only indirectly, authors face novel challenges for conducting and reporting their reviews. This extension of the PRISMA (Preferred Reporting Items for Systematic Reviews and Metaanalyses) statement was developed specifically to improve the reporting of systematic reviews incorporating network meta-analyses.

A group of experts participated in a systematic review, Delphi survey, and face-to-face discussion and consensus meeting to establish new checklist items for this extension statement. Current PRISMA items were also clarified. A modified, 32-item PRISMA extension checklist was developed to address what the group considered to be immediately relevant to the reporting of network meta-analyses.

This document presents the extension and provides examples of good reporting, as well as elaborations regarding the rationale for new checklist items and the modification of previously existing items from the PRISMA statement. It also highlights educational information related to key considerations in the practice of network meta-analysis. The target audience includes authors and readers of network meta-analyses, as well as journal editors and peer reviewers.

Ann Intern Med. 2015;162:777-784. doi:10.7326/M14-2385 www.annals.org For author affiliations, see end of text. Item # * Checklist Item†

Section/Topic

RESEARCH AND REPORTING METHODS

Table. Checklist of Items to Include When Reporting a System RESEARCH AND REPORTING METHODS

TITLE Title	1	Identify the report as a systemati	Table–Continued			
THUW .	1.1	meta-analysis).			at then t	
ABSTRACT			Section/Topic	ltem # *	Checklist Item†	Reporte on Page
Structured summary	2	Provide a structured summary in				onrage
		Background: main objectives Methods: data sources; study	RESULTS‡	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with	
		and synthesis methods, such Results: number of studies and	Study selection		reasons for exclusions at each stage, ideally with a flow diagram.	
		confidence/credible interval to summarize pairwise comp	Presentation of network structure	S3	Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.	
NTRODUCTION		brevity. Discussion/Conclusions: limita Other: primary source of fundi	Summary of network geometry	S4	Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in the treatment network, and potential biases reflected by the network structure.	
Rationale	3	Describe the rationale for the rev	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS,	
Objectives	4	why a network meta-analysis Provide an explicit statement of c	Study characteristics	10	follow-up period) and provide the citations.	
Objectives	-	interventions, comparisons,	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment.	
METHODS	5	In direct parts to the second s	Results of individual	20	For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data	
Protocol and registration Eligibility criteria	6	Indicate whether a review protoc and, if available, provide reg Specify study characteristics (e.g	studies		for each intervention group, and 2) effect estimates and confidence intervals. Modified approaches may be needed to deal with information from larger networks.	
Ligitinity critaria	Ŭ	years considered, language, Clearly describe eligible trea have been clustered or merg	Synthesis of results	21	Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, authors may focus on comparisons versus a particular comparator (e.g., placebo or	
Information sources	7	Describe all information sources authors to identify additiona			standard care), with full findings presented in an appendix. League tables and forest plots may be considered to summarize pairwise comparisons. If additional summary measures were	
Search	8	Present full electronic search stra it could be repeated.	E L S I		explored (such as treatment rankings), these should also be presented.	
Study selection	9	State the process for selecting st and, if applicable, included i	Exploration for inconsistency	S5	Describe results from investigations of inconsistency. This may include such information as measures of model fit to compare consistency and inconsistency models, P values from	
Data collection process	10	Describe method of data extract and any processes for obtain			statistical tests, or summary of inconsistency estimates from different parts of the treatment network.	
Data items	11	List and define all variables for w assumptions and simplificati	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies for the evidence base being studied.	
Geometry of the network	S1	Describe methods used to explo potential biases related to it summarized for presentation the evidence base to reader	Results of additional analyses	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, alternative network geometries studied, alternative choice of prior distributions for Bayesian analyses, and so forth).	
Risk of bias within	12	Describe methods used for asse			bayesian analyses, and so form.	
individual studies		whether this was done at the in any data synthesis.	DISCUSSION			
Summary measures	13	State the principal summary mea of additional summary meas	Summary of evidence	24	Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, researchers, and policymakers).	
		cumulative ranking curve (SL summary findings from meta	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g.,	
Planned methods of analysis	14	Describe the methods of handlin meta-analysis. This should in Handling of multigroup trials;			incomplete retrieval of identified research, reporting bias). Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).	
		Selection of variance structure; Selection of prior distributions Assessment of model fit.	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	
Assessment of inconsistency	S2	Describe the statistical methods the treatment network(s) stu	FUNDING		-	
Risk of bias across studies	15	Specify any assessment of risk of bias, selective reporting with	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role	
Additional analyses	16	Describe methods of additional i include, but not be limited ti Sensitivity or subgroup analysi Meta-regression analyses; Alternative formulations of the			of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network.	

(Continued on following page)

NEGRAR DI VALPOLICELLA • 11 MAGGIO 2023 Centro Formazione IRCCS "Sacro Cuore - Don Calabria"

La valutazione della certezza delle prove (M. Cinquini) The main consideration for study limitations in a network meta-analysis is to ensure that the relative contributions of different sources of direct evidence (which may have different study limitations) are accounted for appropriately

Determinants of certainty in a body of evidence

GRADE

•

- A body of evidence starts as: high $| \oplus \oplus \oplus \oplus$
- 5 factors that can lower quality
 - 1. Risk of bias criteria
 - Lack of randomization (non-randomized or observational studies) lowers confidence to low
 - 2. Inconsistency (or heterogeneity)
 - 3. Indirectness (PICO and applicability)
 - 4. Imprecision
 - 5. Publication bias

Determinants of certainty in a body of evidence: GRADE

- 3 factors can increase quality
 - 1. large magnitude of effect
 - 2. opposing plausible residual bias or confounding
 - 3. dose-response gradient

Jack to

Sintesi percorso per valutare certezza evidenza NMA

Se c'è solo evidenza diretta

- 1. Valutare certezza evidenza diretta (dalle MA pairwise per tutti i domini tranne imprecision)
- 2. Valutare imprecision della stima NMA , non pairwise

Approccio non contestualizzato: si abbassa per imprecision se i CI crossano la linea di non effetto

Approccio contestualizzato : i membri del panel devono stabilire a priori le soglie per effetto trivial, piccolo, modesto, grande. Si contano il numero di doglie che vengono attraversate dai CI;

se crossano una soglia si abbassa di un livello,

se crossano due soglie si abbassa di due livelli

se crossano 3 o + soglie si abbassa di 3 livelli

• Se c'è solo evidenza indiretta

Si considerano solo le due comparison del primo loop (se sono interessato ad B vs C, considero le pairwise di A vs B e di A vs C

Si valuta certainty delle due comparison (pairwise) indirette del primo loop per tutte le dimensioni tranne imprecision.

Si considera la certezza più bassa tra le due

Si valuta imprecisione della stima della NMA come sopra

• Se c'è evidenza mista

Devo vedere quale delle due certezze contribuisce di più alla stima network

• Se una stima (diretta o indiretta) contribuisce di più alla stima network

Valuto la certezza per tutte le dimensioni tranne imprecision della evidenza che contribuisce di più seguendo gli approcci descritti sopra

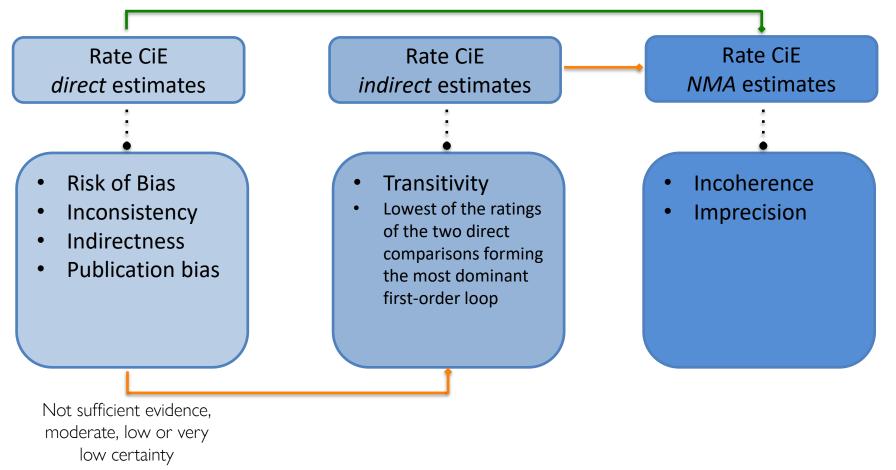
Si valuta imprecisione della stima della NMA come sopra

• Se le due stime contribuiscono in egual misura

devo vedere se sono coerenti

• se sono coerenti:

valuto certezza di entrambe per tutte le dimensioni tranne imprecisione considero quella con certezza più alta


Si valuta imprecisione della stima della NMA come sopra

• Se non sono coerenti

Procedo come sopra ma abbasso ulteriormente per incoherence

NMA certainty in evidence

High certainty and *direct* evidence contributes as much as indirect evidence

Introduction NMA-SoF table project

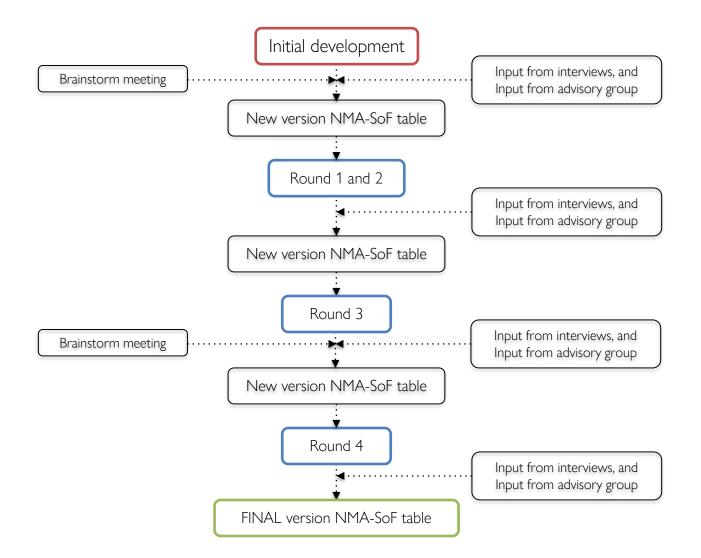
 No standardized Network metanalysis (NMA) Summary of Findings (SoF) table format

Presentational approaches used in the UK for reporting evidence synthesis using indirect and mixed treatment comparisons

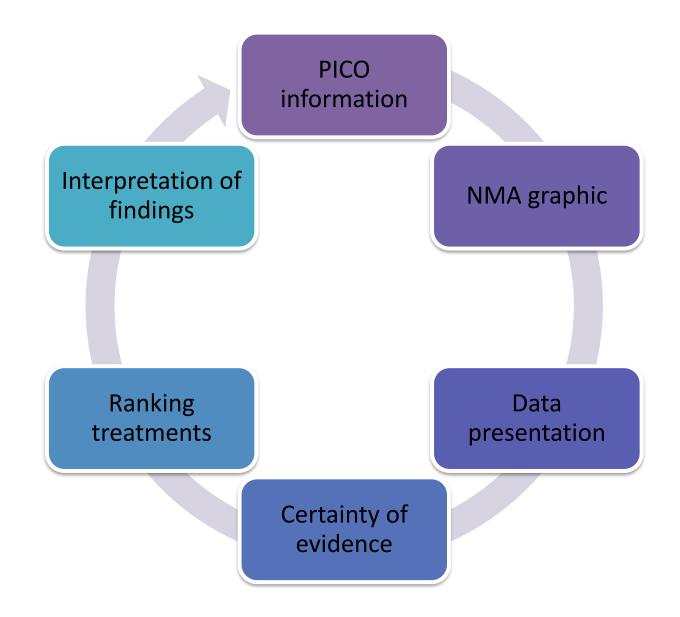
Sze Huey Tan¹, Sylwia Bujkiewicz², Alexander Sutton³, Pascale Dequen⁴ and Nicola Cooper⁵ Reporting of results from network meta-analyses: methodological systematic review

Aïda Bafeta *PhD student*¹, Ludovic Trinquart *postdoctoral research fellow*¹²³⁴, Raphaèle Seror *associate professor of rheumatology*¹³, Philippe Ravaud *professor of epidemiology and director*¹²³⁴

What Guidance Are Researchers Given on How to Present Network Meta-Analyses to End-Users such as Policymakers and Clinicians? A Systematic Review


Shannon M. Sullivan¹*, Doug Coyle², George Wells^{1,2}

1. University of Ottawa Heart Institute, Ottawa, Ontario, Canada, 2. University of Ottawa, Department of Epidemiology and Community Medicine, Ottawa, Ontario, Canada


Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review

Wasifa Zarin¹, Areti Angeliki Veroniki¹, Vera Nincic¹, Afshin Vafaei¹, Emily Reynen¹, Sanober S. Motiwala¹, Jesmin Antony¹, Shannon M. Sullivan¹, Patricia Rios¹, Caitlin Daly¹, Joycelyne Ewusie¹, Maria Petropoulou², Adriani Nikolakopoulou^{2,3}, Anna Chaimani², Georgia Salanti^{2,3,4}, Sharon E. Straus^{1,5} and Andrea C. Tricco^{1,6*}

Introduction NMA-SoF table project

WHAT IS THE OPTIMAL PRESENTATION OF RESULTS OF NMA REPORTS?

NMA-Sof TABLE FORMAT

Estimates of effects, credible intervals, and certainty of the evidence for comparison fluid resucitation in patients with sepsis

Patient or population: Critically ill patients with severe sepsis or septic shock

Interventions: Balanced crystalloid (BC), Albumin, High-molecular-weight hydroxyethyl starch (H-HES), Saline solution, Gelatin

Comparator (reference): Low-molecular weight hydroxyethyl starch (L- HES)

Outcome: Mortality; range of follow up between 24 hours to 90 days

Setting(s): Inpatient

Geometry of the Networl

Bayesian NMA-SoF table

Tot	al studies: 6 RCT	Relative effect**	Anticipate	d absolute effect**	* (95% Crl)	Certainty of	Ranking****	Interpretation
Total Participants: 8308		(95% Crl)	Without intervention	With intervention	Difference	evidence	(95% Crl)	of Findings
•	Balanced crystalloid (2 RCT; 846 participants)	0.75 (0.58 to 0.97) Network estimate	180 per 10001	141 per 1000	39 per 1000 fewer (from 67 fewer to 5 fewer)	⊕⊕⊕O Moderate Due to Indirectness ²	2.00 (1.00 to 4.00)	Probably superio
•	Albumin (No direct evidence, Indirect evidence only)	0.79 (0.59 to 1.06) Network estimate	180 per 10001	148 per 1000	32 per 1000 fewer (from 65 fewer to 88 more)	⊕⊖OO Low Due to Imprecision ³ , and Indirectness ⁴	2.00 (1.00 to 5.00)	Probably inferior
•	H-HES (No direct evidence, Indirect evidence only)	0.91 (0.63 to 1.33) Network estimate	180 per 1000 ¹	164 per 1000	16 per 1000 fewer (from 59 fewer to 46 more)	⊕⊕OO Low Due to Imprecision ³ , and Indirectness ⁴	4.00 (2.00 to 6.00)	Probably superio
•	Saline solution (4 RCT; 7642 participants)	1.04 (0.87 to 1.25) Network estimate	180 per 10001	186 per 1000	6 per 1000 more (from 20 fewer to 35 more)	⊕⊕⊕O Moderate Due to Imprecision ⁴ , Indirectness ⁶ , and Inconsistency ⁵	4.00 (1.00 to 6.00)	Probably superio
•	Gelatin (No direct evidence, Indirect evidence only)	1.00 (0.44 to 2.21) Network estimate	180 per 10001	180 pe r 1000	0 per 1000 fewer (from 92 fewer to 146 more)	⊕OOO Very Low Due to Imprecision ³ , and Indirectness ²	5.00 (3.00 to 6.00)	Definitely inferior
•	L-HES	Reference Comparator	No estimable	No estimable	No estimable	Reference Comparator	5.00 (1.00 to 6.00)	Reference comparator

MA-SoF table definitions

Solid lines represent direct comparisons

* Network Metanalysis (NMA) estimates are reported as odds ratio. Crl: credible interval. Results are expressed in credible intervals as opposed to the confidence intervals (CI) since a Bayesian analysis has been conducted.

*** Anticipated absolute effect. Anticipated absolute effect compares two risks by calculating the difference between the risk of the intervention group with the risk of the control group.

**** Median and credible intervals are presented. Rank statistics is defined as the probabilities that a treatment out of *n* treatments in a network meta-analysis is the best, the second, the third and so on until the least effective treatment. † Information is reported from studies included in the network metanalysis for the comparison displays.

GRADE Working Group grades of evidence (or certainty in the evidence)

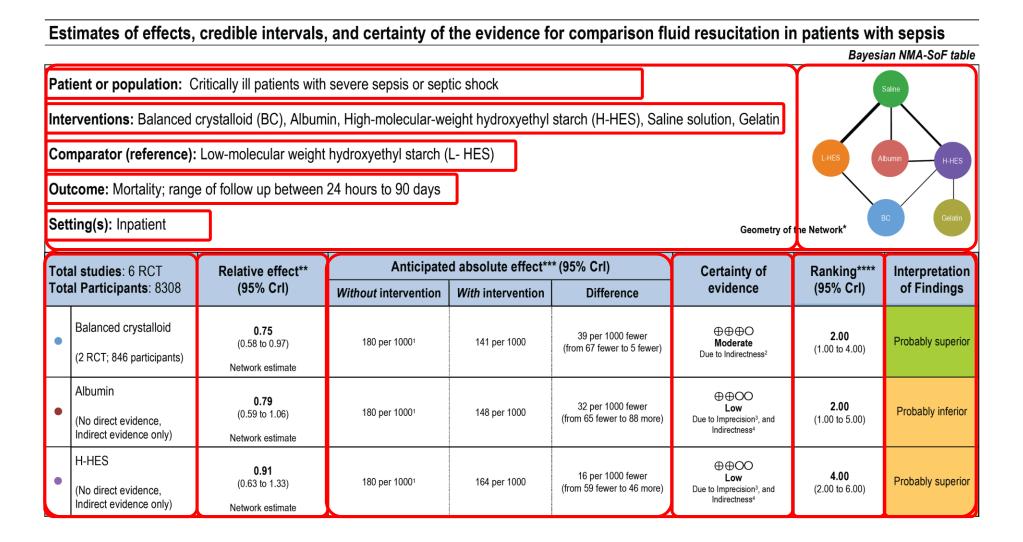
High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanatory Footnotes

¹ Mortality is reported from a large randomized control trail where critically ill patients admitted to an intensive care unit (ICU) required fluid resuscitation with hydroxyethyl starch (HES).


service information of the service of the comparison goes through a second order loop via heavy starts had saline.

Serious imprecision. Due to wide confidence intervals in the indirect estimate.

⁴Serious indirectness. The indirect evidence for this comparison goes through a first order loop via saline and saline vs. light starch.

⁵ Serious inconsistency. Due to there was significant heterogeneity in the direct comparison of light starch vs. balanced crystalloid.

⁶ Serious indirectness. The indirect evidence for this comparison goes through a second order loop via balance crystalloid and heavy starch

130

•	Saline solution (4 RCT; 7642 participants)	1.04 (0.87 to 1.25) Network estimate	180 per 10001	186 per 1000	6 per 1000 more (from 20 fewer to 35 more)	⊕⊕⊕O Moderate Due to Imprecision ⁴ , Indirectness ⁶ , and Inconsistency ⁵	4.00 (1.00 to 6.00)	Probably superior
•	Gelatin (No direct evidence, Indirect evidence only)	1.00 (0.44 to 2.21) Network estimate	180 per 10001	180 pe r 1000	0 per 1000 fewer (from 92 fewer to 146 more)	⊕OOO Very Low Due to Imprecision ³ , and Indirectness ²	5.00 (3.00 to 6.00)	Definitely inferior
•	L-HES	Reference Comparator	No estimable	No estimable	No estimable	Reference Comparator	5.00 (1.00 to 6.00)	Reference comparator

NMA-SoF table definitions

* Solid lines represent direct comparisons

** Network Metanalysis (NMA) estimates are reported as odds ratio. Crl: credible interval. Results are expressed in credible intervals as opposed to the confidence intervals (CI) since a Bayesian analysis has been conducted.

*** Anticipated absolute effect. Anticipated absolute effect compares two risks by calculating the difference between the risk of the intervention group with the risk of the control group.

**** Median and credible intervals are presented. Rank statistics is defined as the probabilities that a treatment out of n treatments in a network meta-analysis is the best, the second, the third and so on until the least effective treatment.

† Information is reported from studies included in the network metanalysis for the comparison displays.

GRADE Working Group grades of evidence (or certainty in the evidence)

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanatory Footnotes

¹ Mortality is reported from a large randomized control trail where critically ill patients admitted to an intensive care unit (ICU) required fluid resuscitation with hydroxyethyl starch (HES).

² Serious indirectness. The indirect evidence for this comparison goes through a second order loop via heavy starch and saline.

³ Serious imprecision. Due to wide confidence intervals in the indirect estimate.

* Serious indirectness. The indirect evidence for this comparison goes through a first order loop via saline and saline vs. light starch.

⁵ Serious inconsistency. Due to there was significant heterogeneity in the direct comparison of light starch vs. balanced crystalloid.

⁶ Serious indirectness. The indirect evidence for this comparison goes through a second order loop via balance crystalloid and heavy starch.

Estimates of effects, credible intervals, and certainty of the evidence for chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia

							Bayesi	an NMA-SoF tab
BEI	NEFITS							
inte calc Cor	ient or population: Ir reventions: Low and h sium, vitamin D, folic ac mparator (reference): tcome: Prevention of a	igh dose aspirin, nona cid Placebo	spirin non-steroidal ar	nti-inflammatory dr		Aspirin, low dose Calolum vtarrin D		pirin, high se Aspirin * calcium vitamin D Vitamin D
	ting: Outpatient		A until a lun anta			NSAID		Placebo
	al studies: 21 RCT al Participants: 12088	Relative effect** (95% Crl)	Without intervention	d absolute effect** With intervention	Difference	Certainty of evidence	Ranking**** (95% Crl)	Interpretatio of Findings
•	Aspirin + calcium + vitamin D (1 RCT; 427 participants)	0.71 (0.18 to 2.49) Network estimate	74 per 10001	53 per 1000	21 fewer per 1000 (61 fewer to 110 more)	⊕⊕OO Low Due to Imprecision ^{2, 5}	3 (1 to 10)	Probably inferio
•	Calcium + vitamin D (1 RCT; 1028 participants)	0.91 (0.52 to 1.63) Network estimate	74 per 10001	67 per 1000	7 fewer per 1000 (36 fewer to 47 more)	⊕⊕OO Low Due to Imprecision ^{2,5}	6 (1 to 10)	Probably inferio
•	Aspirin + folate (2 RCT; 916 participants)	0.73 (0.43 to 1.19) Network estimate	74 per 10001	54 per 1000	20 fewer per 1000 (42 fewer to 14 more)	⊕⊕OO Low Due to Imprecision ^{2,5}	4 (2 to 8)	Probably inferio
•	Aspirin, high dose (3 RCT; 917 participants)	0.81 (0.50 to 1.28) Network estimate	74 per 10001	60 per 1000	14 fewer per 1000 (37 fewer to 21 more)	⊕⊕OO Low Due to Imprecision ^{2,3}	5 (2 to 9)	Probably inferio
•	Aspirin, low dose (3 RCT; 823 participants)	0.71 (0.41 to 1.23) Network estimate	74 per 10001	53 per 1000	21 fewer per 1000 (44 fewer to 17 more)	Due to Imprecision ^{2,5}	3 (2 to 9)	Probably inferio
•	Nonaspirin NSAIDs (4 RCT; 3486 participants)	0.37 (0.24 to 0.53) Network estimate	74 per 10001	27 per 1000	47 fewer per 1000 (56 fewer to 35 fewer)	⊕⊕⊕ High '	1 (1 to 2)	Definitely superi
•	Vitamin D (1 RCT; 764 participants)	1.19 (0.65 to 2.15) Network estimate	74 per 10001	88 per 1000	14 more per 1000 (26 fewer to 85 more)	⊕⊕OO Low Due to Imprecision ^{1,5}	9 (3 to 10)	Probably inferio
•	Calcium (3 RCT; 2503 participants)	1.00 (0.66 to1.52) Network estimate	74 per 10001	74 per 1000	0 fewer per 1000 (25 fewer to 38 more)	⊕⊕OO Low Due to Imprecision ^{4, 5}	7 (3 to 10)	Probably inferio
•	Folate (3 RCT; 1224 participants)	1.32 (0.85 to 2.00) Network estimate	74 per 10001	51 per 1000	23 more per 1000 (11 fewer to 74 more)	⊕⊕OO Low Due to Imprecision ^{2,5}	9 (5 to 10)	Probably inferio
•	Placebo	Reference comparator	No estimable	No estimable	No estimable	Reference comparator	7	Reference

NMA-SoF table definitions

* Lines represent direct comparisons

** Estimates are reported as odds ratio. Crt: credible interval. Results are expressed in credible intervals as opposed to the confidence intervals (Ci) since a Bavesian analysis has been conducted.

*** Anticipated absolute effect. Anticipated absolute effect compares two risks by calculating the difference between the risks of the intervention group with the risk of the control group.

**** Surface under the cumulative (SUCRA) ranking and credible intervals for efficacy are presented. Rank statistics is defined as the probabilities that a treatment out of n treatments in a network meta-analysis is the best, the second, the third and so on until the least effective treatment.

GRADE Working Group grades of evidence (or certainty in the evidence)

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanatory Footnotes Baseline risks (assumed control risk) obtained from the National Cancer Institute pooling project

²Very serious imprecision since 95% CrI crosses unity, and with wide credible intervals suggesting high possibility of harm.

Very serious imprecision since RR>1 (suggesting greater likelihood of harm than benefit), and with wide credible intervals).

*Very serious imprecision since RR is one (suggesting no evidence of benefit) and wide credible intervals suggesting high possibility of harm.

Conceptually, there was no significant intransitivity, with comparable distribution of plausible effect modifiers across trials of different chemopreventive agents

Estimates of effects, credible intervals, and certainty of the evidence for chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia

Bayesian N									
BE	NEFITS								
Patient or population: Individuals with previous colorectal neoplasia									
Inte	Interventions: Low and high dose aspirin, nonaspirin non-steroidal anti-inflammatory drugs (NSAIDs),								
calo	calcium, vitamin D, folic acid								
Coi	mparator (reference):	Placebo				Calcium + vitamin D		calcium + vitamin D	
Out	come: Prevention of	advanced neoplasia: ra	ange of follow up betv	veen three to five v	/ears			\checkmark	
	ting: Outpatient	,,		· · · · · · · · · · · · · · · · · · ·	,	Folate NSAID		Vitamin D	
500			1		Geometry	y of the Network*		Placebo	
	al studies: 21 RCT	Relative effect**	Anticipate	d absolute effect**	* (95% Crl)	Certainty of			
Tota	al Participants: 12088	(95% Crl)	Without intervention	With intervention	Difference	evidence	(95% Crl)	of Findings	
•	Aspirin + calcium + vitamin D	0.71 (0.18 to 2.49)	74 per 1000¹	53 per 1000	21 fewer per 1000 (61 fewer to 110 more)	⊕⊕OO Low	3 (1 to 10)	Probably inferior	
	(1 RCT; 427 participants)	Network estimate				Due to Imprecision ^{2, 5}			
•	Calcium + vitamin D	0.91 (0.52 to 1.63)	74 per 1000¹	67 per 1000	7 fewer per 1000 (36 fewer to 47 more)	⊕⊕OO Low	6 (1 to 10)	Probably inferior	
	(1 RCT; 1028 participants)	Network estimate				Due to Imprecision ^{2, 5}	(1.0.10)		
•	Aspirin + folate	0.73 (0.43 to 1.19)	74 per 1000¹	54 per 1000	20 fewer per 1000 (42 fewer to 14 more)	⊕⊕OO Low	4	Probably inferior	
	(2 RCT; 916 participants)	Network estimate				Due to Imprecision ^{2, 5}	(2 to 8)		
•	Aspirin, high dose	0.81 (0.50 to 1.28)	74 per 10001	60 per 1000	14 fewer per 1000 (37 fewer to 21 more)	⊕⊕OO Low	5 (2 to 9)	Probably inferior	
	(3 RCT; 917 participants)	Network estimate				Due to Imprecision ^{2, 5}	(2.0.0)		

133

•	Aspirin, low dose (3 RCT; 823 participants)	0.71 (0.41 to 1.23) Network estimate	74 per 10001	53 per 1000	21 fewer per 1000 (44 fewer to 17 more)	⊕⊕OO Low Due to Imprecision ^{2, 5}	3 (2 to 9)	Probably inferior
•	Nonaspirin NSAIDs (4 RCT; 3486 participants)	0.37 (0.24 to 0.53) Network estimate	74 per 10001	27 per 1000	47 fewer per 1000 (56 fewer to 35 fewer)	⊕⊕⊕⊕ High.⁵	1 (1 to 2)	Definitely superior
•	Vitamin D (1 RCT; 764 participants)	1.19 (0.65 to 2.15) Network estimate	74 per 10001	88 per 1000	14 more per 1000 (26 fewer to 85 more)	⊕⊕OO Low Due to Imprecision ^{3. 5}	9 (3 to 10)	Probably inferior
•	Calcium (3 RCT; 2503 participants)	1.00 (0.66 to1.52) Network estimate	74 per 10001	74 per 1000	0 fewer per 1000 (25 fewer to 38 more)	⊕⊕OO Low Due to Imprecision ^{4, 5}	7 (3 to 10)	Probably inferior
•	Folate (3 RCT; 1224 participants)	1.32 (0.85 to 2.00) Network estimate	74 per 10001	51 per 1000	23 more per 1000 (11 fewer to 74 more)	⊕⊕OO Low Due to Imprecision ^{2.5}	9 (5 to 10)	Probably inferior
•	Placebo	Reference comparator	No estimable	No estimable	No estimable	Reference comparator	7 (4 to 9)	Reference comparator

NMA-SoF table definitions

* Lines represent direct comparisons

** Estimates are reported as odds ratio. CrI: credible interval. Results are expressed in credible intervals as opposed to the confidence intervals (CI) since a Bayesian analysis has been conducted.

*** Anticipated absolute effect. Anticipated absolute effect compares two risks by calculating the difference between the risks of the intervention group with the risk of the control group.

**** Surface under the cumulative (SUCRA) ranking and credible intervals for efficacy are presented. Rank statistics is defined as the probabilities that a treatment out of *n* treatments in a network meta-analysis is the best, the second, the third and so on until the least effective treatment.

GRADE Working Group grades of evidence (or certainty in the evidence)

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

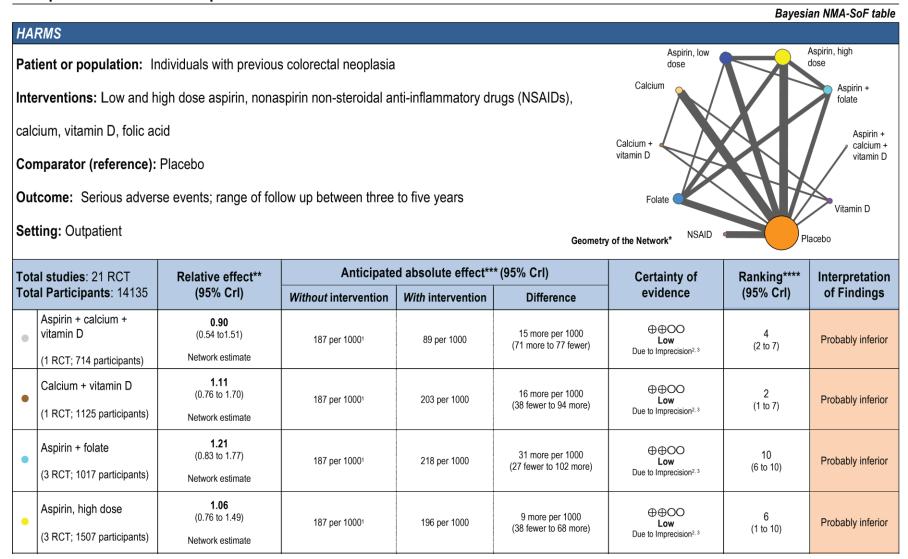
Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanatory Footnotes

¹ Baseline risks (assumed control risk) obtained from the National Cancer Institute pooling project


²Very serious imprecision since 95% Crl crosses unity, and with wide credible intervals suggesting high possibility of harm.

³ Very serious imprecision since RR>1 (suggesting greater likelihood of harm than benefit), and with wide credible intervals).

⁴ Very serious imprecision since RR is one (suggesting no evidence of benefit) and wide credible intervals suggesting high possibility of harm.

⁵ Conceptually, there was no significant intransitivity, with comparable distribution of plausible effect modifiers across trials of different chemopreventive agents.

Estimates of effects, credible intervals, and certainty of the evidence for chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia

•	Aspirin, low dose (2 RCT; 794 participants)	0.78 (0.43 to 1.38) Network estimate	187 per 10001	152 per 1000	35 fewer per 1000 (54 more to 97 fewer)	Due to Imprecision ^{2, 3}	8 (3 to 10)	Probably inferior
•	Nonaspirin NSAIDs (3 RCT; 3964 participants)	1.23 (0.95 to 1.64) Network estimate	187 per 10001	221 per 1000	34 more per 1000 (8 fewer to 87 more)	⊕⊕OO Low Due to Imprecision ^{2. 3}	2 (1 to 9)	Probably inferior
•	Vitamin D (1 RCT; 835 participants)	1.10 (0.74 to 1.70) Network estimate	187 per 10001	212 per 1000	25 more per 1000 (20 fewer to 78 more)	⊕⊕OO Low Due to Imprecision ^{2, 3}	5 (2 to 10)	Probably inferior
•	Calcium (4 RCT; 2669 participants)	1.38 (1.07 to 1.89) Network estimate	187 per 10001	238 per 1000	51 more per 1000 (22 more to 82 more)	⊕⊕⊕⊕ High₃	8 (3 to 10)	Probably superior
•	Folate (3 RCT; 1511 participants)	0.85 (0.59 to 1.22) Network estimate	187 per 10001	165 per 1000	22 fewer per 1000 (21 more to 59 fewer)	⊕⊕OO Low Due to Imprecision ^{2.3}	6 (2 to 10)	Probably inferior
•	Placebo	Reference comparator	No estimable	No estimable	No estimable	Reference comparator	3 (1 to 10)	Reference comparator

NMA-SoF table definitions

* Lines represent direct comparisons

** Estimates are reported as odds ratio. CrI: credible interval. Results are expressed in credible intervals as opposed to the confidence intervals (CI) since a Bayesian analysis has been conducted.

*** Anticipated absolute effect. Anticipated absolute effect compares two risks by calculating the difference between the risks of the intervention group with the risk of the control group.

**** Surface under the cumulative (SUCRA) ranking and credible intervals for harms are presented. Rank statistics is defined as the probabilities that a treatment out of *n* treatments in a network meta-analysis is the best, the second, the third and so on until the least effective treatment.

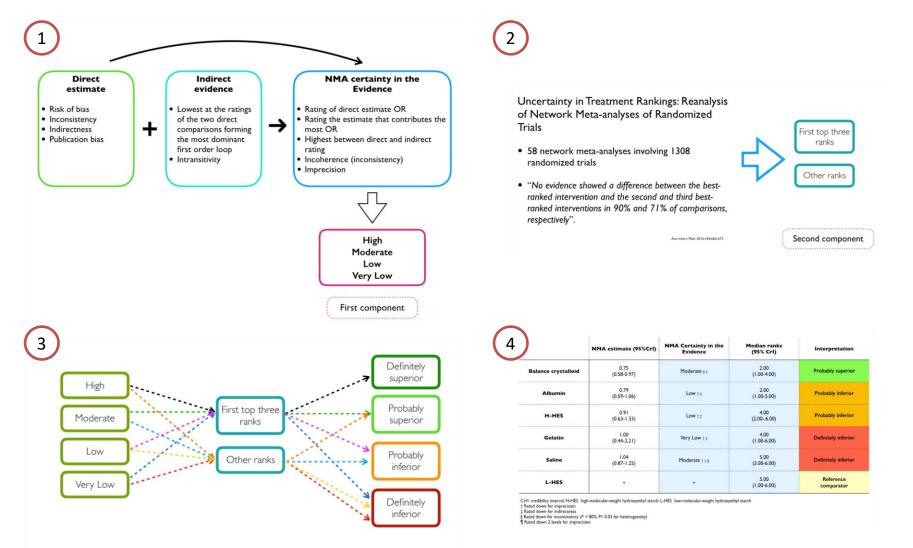
GRADE Working Group grades of evidence (or certainty in the evidence)

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

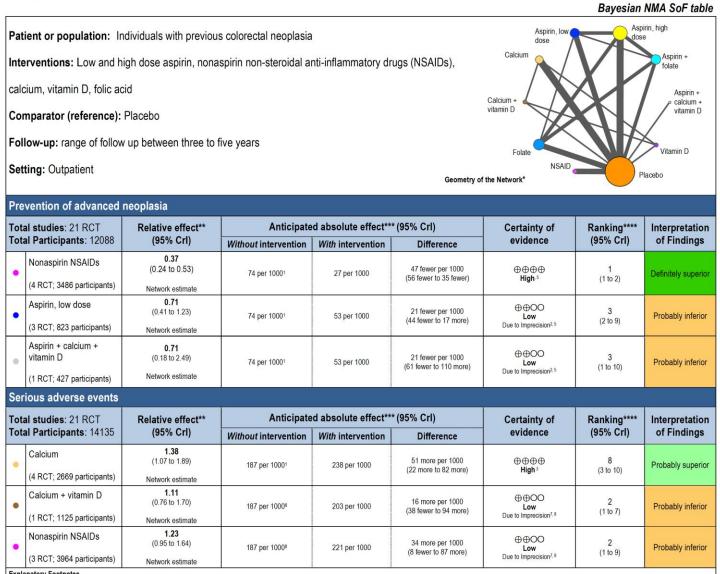
Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect


Explanatory Footnotes

¹Based on assumed control risk of 18.7% (corresponding to pooled 18.7% risk of SAEs in placebo-treated patients of included trials)


² Very serious imprecision since 95% Crl crosses unity, and with wide credible intervals suggesting uncertainty in the estimate.

³Conceptually, there was no significant intransitivity, with comparable distribution of plausible effect modifiers across trials of different chemopreventive agents.

Drawing conclusions from NMA

Estimates of effects, credible intervals, and certainty of the evidence for chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia

Explanatory Footnotes

Baseline risks (assumed control risk) obtained from the National Cancer Institute pooling project

Very serious imprecision since 95% Crl crosses unity, and with wide credible intervals suggesting high possibility of harm.

Very serious imprecision since RR>1 (suggesting greater likelihood of harm than benefit), and with wide credible intervals).

Very serious imprecision since RR is one (suggesting no evidence of benefit) and wide credible intervals suggesting high possibility of harm.

5 Conceptually, there was no significant intransitivity, with comparable distribution of plausible effect modifiers across trials of different chemopreventive agents.

Based on assumed control risk of 18.7% (corresponding to pooled 18.7% risk of SAEs in placebo-treated patients of included trials)

7 Very serious imprecision since 95% Crl crosses unity, and with wide credible intervals suggesting uncertainty in the estimate.

* Conceptually, there was no significant intransitivity, with comparable distribution of plausible effect modifiers across trials of different chemopreventive agents.