

Congresso Nazionale sul carcinoma del polmone

CARCINOMA DEL POLMONE: QUALI NOVITÀ NEL 2023?

9 OTTOBRE 2023

VERONA Hotel Leon D'Oro

Responsabile scientifico STEFANIA GORI

Sessione II NSCLC avanzato oncogene addicted

Il trattamento della malattia con alterazioni di BRAF, ROS1 & RET

Sara Pilotto

Department of Engineering for Innovation Medicine University of Verona and Verona University Hospital Trust

Potenziali conflitti d'interesse da dichiarare

Tipo di affiliazione o supporto finanziario	Sponsor
Advisory Board, Speaker's Bureau, Research Funding, Consultant	AstraZeneca
Advisory Board, Speaker's Bureau, Consultant	MSD
Speaker's Bureau, Consultant	Eli Lilly
Speaker's Bureau, Consultant, Research Funding, Consultant	BMS
Advisory Board, Speaker's Bureau, Consultant	Roche
Advisory Board, Speaker's Bureau, Consultant	AMGEN
Advisory Board, Speaker's Bureau, Consultant	Novartis
Advisory Board, Speaker's Bureau, Consultant	Sanofi
Advisory Board, Speaker's Bureau, Consultant	Takeda

Agenda

Small slices also make NSCLC the paradigm for personalized medicine

Predictive Biomarkers in advanced NSCLC

Currently, **MET, RET, EGFRex20ins, KRAS G12C are for second-line treatment decisions** (HER2 not yet druggable in clinical practice)

Oncogene-addicted metastatic NSCLC ESMO Clinical Practice Guideline 2023

Agenda

Standard of care Dabrafenib-trametinib in 1st line [BRAF p.V600]

All grades	D	D + T
Fever	35%	<mark>↑46%</mark>
Nausea	27%	<mark>↑40%</mark>
Vomiting	20%	<mark>↑35%</mark>
Diarrhea	16%	<mark>↑34%</mark>
Skin carcinoma	<mark>17%</mark>	8%
Hyperkeratosis	<mark>29%</mark>	-
SAEs	42%	<mark>↑56%</mark>
Reduction	18%	<mark>↑35%</mark>
Discont.	6%	<mark>↑12%</mark>

- Continue if mild and treat to ameliorate symptoms
- It goes away/get better when you stop the drug (!)
- Fever \rightarrow acetaminophen, naproxen, steroids
- Monitor with echocardio and ophthalmologic reviews!!

Planchard D, Lancet Oncol 2017 Planchard D, J Thorac Oncol 2022 Gouda MA & Subbiah V, ASCO Ed Book 2023

Trying to improve risk-benefit R Encorafenib – binimetinib in 1st line [BRAF p.V600E]

Antitumor activity endpoints by IRR

	Treatment naïve (n=59)	Previously treated (n=39)
Objective response rate (95% CI), % ^a	75,62,85)	46 30, 63)
Complete response	9 (15)	4 (10)
Partial response	35 (59)	14 (36)
Stable disease	10 (17)	13 (33)
Progressive disease	2 (3)	3 (8)
Disease control rate at 24 weeks (95% CI), $\%$	64 (51, 76)	41 (26, 58)
Duration of response, median (95% CI), months	NE (23.1, NE)	16.7 (7.4, NE)

All grades	D + T	E + B
Fever	46%	<mark>↓ 22%</mark>
Nausea	40%	50%
Vomiting	35%	29%
Diarrhea	34%	43%
Fatigue	28%	32%
Oedema	23%	↓11%
SAEs	56%	<mark>↓41%</mark>
Reduction	35%	<mark>↓24%</mark>
Discont.	12%	15%

Change from baseline in the sum of diameters of target lesions by investigator

Pyrexia (treatment-related) was the cause of dose interruption of encorafenib plus binimetinib in one patient but did not result in dose reduction or permanent treatment discontinuation

Ahn MJ et al, ASCO 2023

How to manage disease PD? Role of IO & mechanisms of resistance

Mazieres J et al, Ann Oncol 2019

Outcome by 1° line regimen	rwTOT
PD-(L)1 mono [N = 26]	7.6 ms
PD-(L)1 + ChT [N = 13]	17.5 ms
Pembro + platinum + pem [N = 12]	20.7

BRAF V600E: rwTOT and rwTTNT similar for PD-(L)1 mono but markedly longer for PD-(L)1+ChT VS other cohorts, including the driver-negative cohort

Garassino MC et al, JTO 2023

Reactivation of ERK signaling either upstream or downstream of BRAF kinase (= melanoma) through:

- BRAF splice variants (16%)
- BRAF gene amplification (13%)
- NRAS/KRAS (20%) or MEK1/2 mutations (7%)

BRAF-independent reactivation of ERK signaling

R

Facchinetti F et al, JTO 2023 Abdayem P & Planchard D, Clinical Advances in Hematology & Oncology 2022

What about the rest of BRAF world?

Non-V600 mutations

Yaeger R et al, Cancer Discovery 2019

Agenda

Strategy

Biology & heterogeneity

Which type of alterations?

Targeted RNA is better suited for fusion identification

c	f matched trapy	
Rearrangement	Matched Therapy	Best Response*
ML4-ALK	Alectinib	SD
CD74-ROS1	Entrectinib	SD
QSTM1-NTRK3	Larotrectinib	PR**
TRN-NTRK2	Larotrectinib	SD
CD74-ROS1	Entrectinib	PR**
D74-NRG1	Afatanib	SD
MET Exon14 Skipping	Crizotonib	SD
LC34A2-ROS1	Crizotonib	PD
LC34A2-ROS1	Crizotonib	SD
DC4-NRG1	Afatinib	PD

Pros	Cons
All fusions of interest at once!	RNA is unstable
Fusion partner agnostic	Higher rate of QC fail
Inframe fusions	More tissue necessary
Expressed / upregulated (low tumor % input), threshold 50 copies	Higher costs
Specific and sensitive (if passes QC)	

Failure rate can be up to 20%!

Material at higher risk for failure

- cytology

decalified biopsies

- biopsies overweekend in formalin

RNA-based >> DNA-based for fusions and splice site mutations

Hybride DNA and RNA panels (one step sequencing)

> Benayed R et al, Clin Cancer Res 2019 Modified from Radonic T, ELCC 2023

Standard of care Crizotinib & Entrectinib in 1st line

PROFILE 1001: crizotinib

• On-target resistance mutations (G2032R)

ROS1-rearranged

NSCLC (N = 53)

72 (58-83)

6(11)

32 (60)

10 (19)

3 (6)

2 (4)

7.9 (4.3-103.6)

24.7 (15.2-45.3)

19.3 (15.2-39.1)

CR

PR

SD

PD

• CNS progression

Grade \geq 3 AEs 43% mainly dysgeusia, weight increase, constipation and diarrhea – **discontinuation 7%**

Standard of care Crizotinib VS Entrectinib in 1st line

Primary endpoint	Safety-related endpoints
PFS per BICR (RECIST v1.1) in the CNS population	Incidence, type, and severity of AEs (including serious AEs and AEs leading to dose
Secondary efficacy endpoints	modifications/interruptions)
 ORR, DoR and PFS in the ITT population: BICR and investigator assessed (RECIST v1.1) OS in the CNS and ITT populations CNS-PFS in the ITT population: BICR assessed (RECIST v1.1) 	 Change from baseline in treatment-related symptoms (EORTC QLQ-C30) Frequency of patients' response of the degree they are troubled by treatment symptoms (EORTC IL46)
CNS-ORR and CNS-DoR in the CNS population: BICR assessed (RECIST v1.1)	PROs endpoints
	Impact on functioning (EORTC QLQ-C30) and lung cancer-specific symptoms (EORTC QLQ-LC13)

Should we escalate 1st line with new gen TKIs? Repotrectinib [TRIDENT-1]

ROS1 TKI-naïve 1 prior ROS1 TKI AND no prior chemo prior ROS1 TKI AND 1 platinum-based chemo Patients with CNS metastases at baseline, rior ROS1 TKIs AND no prior chemoa Measurable. treatment ongoin icORR, 6 % (95% CI)

without CNS (n=53)	with CNS (n=24)	without CNS (n=32)	100- 80- 50- 50- 50- 50- 50- 50- 50- 50- 50- 5
75%	33%	41%	- 04 - 04 - 04 - 04 - 04 - 04 - 04 - 04
77% (PFS at12m)	57% (PFS at 6m)	75% (PFS at 6m)	-20- -40- -60- -60-
	without CNS (n=53) 75% 77% (PFS at12m)	without CNS (n=53) with CNS (n=24) 75% 33% 77% 57% (PFS at12m) (PFS at 6m)	without CNS (n=53)with CNS (n=24)without CNS (n=32)75%33%41%77%57%75% (PFS at 12m)(PFS at 6m)(PFS at 6m)

ROS1 pretreated (n=56)

ROS1 naïve (n=71)

ORR PFS

Dose interruption: 35% Dose discontinuation: 3%

All patients treated at the RP2D⁴ treated at the RP2D (n = 320)TRAEs TEAEs TRAE 409 (96) 318 (99) 306 (96) 149 (35) 112 (35) 100 (31) 150 (35) 158 (49) 107 (33) 14 (3) 11 (3) 23 (7) 38 /0 106 (33 24 (8)

IOUS AES	147 (34)	36 (9)	106 (33)	24 (0)
ade ≥ 3 AEs	216 (51)	122 (29)	156 (49)	86 (27)
tal AEs	19 (4)	0	13 (4)	0
most common TEAE was dizzir	ess, which was reported	1 in 62% of patients (n =	264); grade ≥ 3 treatme	nt-emergent dizzines

Preventive effect of repotrectinib for BM (only 1.8% of TKI-naïve pts developed a new brain mets)

Cho BC et al. WCLC 2023 Lin JI et al. ASCO 2023

ROS¹

IC₅₀ (nmol/L)	Crizotinib	Entrectinib	Lorlatinib	Repotrectinib	Cabozantinib	Ceritinib	Brigatinib	Taletrectinib	Alectinib
Parental	840.5	1,801.0	>3,000	1,218.0	>3,000	1,117.0	>3,000	>3,000	1,207.0
Nonmutant	5.4	2.7	0.7	2.0	2.8	16.4	9.4	2.6	995.4
 G2032R	609.6	436.3	196.6	23.1	17.5	346.4	472.7	53.3	1,091.0
L2000V	37.1	25.9	2.5	10.1	7.6	124.9	78.9	29.8	985.0
L2086F	536.8	440.0	>3,000	587.9	3.6	226.9	159.3	1,265.0	672.5
S1986F/L2000V	159.4	36.1	2.4	7.2	5.1	86.9	62.5	20.3	1,080.0
S1986F/L2086F	469.7	344.2	>3,000	241.2	1.3	154.8	48.5	662.6	919.9
G2032R/L2086F	498.6	335.4	>3,000	248.9	5.0	573.9	450.9	744.2	1,254.0
S1986F/G2032R	594.4	718.5	990.6	65.1	70.1	614.7	717.0	105.4	1,137.0
S1986F/G2032R/L2086F	562.8	1,111.0	2,131.0	1,178.0	9.4	1,116.0	1,341.0	2,432.0	1,150.0

Lin JL et al, Clin Cancer Res. 202 Zhang Y et al, NPJ 20221

ROS1

How to manage disease PD? Clinical data

	Lorlatinib (Phase 1/2)	Repotrectinib (TRIDENT-1 Phase 1/2)	Taletrectinib (TRUST China Phase 2)	NVL-520 (ARROS-1 Phase 1)
Patients	N=40	N=56	N=38	N=21
ORR	35% (prior crizotinib)	38% (only 1 prior ROS1 TKI and no prior chemo)* *FDA breakthrough therapy designation	50% (prior crizotinib)* [*] FDA breakthrough therapy designation	48% • 53% (9/17) with ≥2 prior ROS1 TKI, ≥1 chemo • 50% (9/18) with prior lorlatinib or repotrectinib
Median PFS	8.5 months	9.0 months	9.8 months	Not reported
CNS activity	12/24 (50%) with measurable or nonmeasurable CNS disease	5/13 (38%) with measurable CNS metastases	11/12 (92%) with measurable CNS metastases (TKI-naïve & crizotinib-pretreated)	CNS responses reported
Clinical ROS1 G2032R activity	Response in 0/6 (0%) patients with a baseline ROS1 G2032R in plasma	Responses in 10/17 (59%) patients with a baseline ROS1 G2032R	Responses in 4/5 (80%) patients with a baseline ROS1 G2032R	Responses in 7/9 (78%) patients with a baseline ROS1 G2032R
Most common TRAEs or TEAEs (all grades)	Hypercholesterolemia, hypertriglyceridemia, edema, peripheral neuropathy, cognitive/mood effects, weight increased	Dizziness, dysgeusia, constipation, paresthesia, dyspnea, anemia, fatigue, nausea, muscular weakness, ataxia	Diarrhea, nausea, vomiting, ALT increase, AST increase, anemia, neutrophil count decrease	No DLTs or treatment-related SAEs or dizziness reported
Reference	Shaw AT et al., Lancet Oncol 2019	Cho BC et al., WCLC 2023	Li W et al., ELCC 2023	Drilon A et al., EORTC-NCI-AACR 2022

How to manage disease PD? Realistic algorithm of ROS1+ NSCLC in Italy – 2023

* NGS recommended;

Standard of care A not-target 1st line

Chemotherapy works [ORR~50%, mPFS~6ms, mOS~24ms]

Outo	come All Chemotherapy Agents	(n = 108) Platinum Doublet (n = 8	 Platinum + Pemetrexed (n = 66)
Outcomes Best response	(95% Cl) 52% (39.8 to 64.4) 36 of 69	9 evaluable 51% (38.1 to 63.4) 33 of 65 ev	valuable 49% (35.4 to 62.9) 27 of 55 evaluable
with 1° line CT Disease control	ol rate (95% Cl) 75% (63.5 to 84.9) 52 of 65	9 evaluable 75% (63.1 to 85.2) 49 of 65 ev	valuable 75% (61.0 to 85.3) 41 of 55 evaluable
PET Pogistry Median PFS (9	6.6 months (5.1 to 9	9.3) 7.8 months (5.3 to 10.2 mo	onths) 6.4 months (4.3 to 8.8 months)
Median OS (95	5% CI) 23.6 months (13.6 to	o 30.8) 24.8 months (13.6 to 32.3 m	onths) 23.6 months (13.4 to 33.2 months)

Drilon A et al, Ann Oncol 2016 Gautschi O et al, J Clin Oncol 2017

Still controversies with immunotherapy

	Doublet CT (N=108)	Single agentCT (N=34)	CT-ICB (N=41)	ICB (N=52)	MTKi (N=21)	RETi (N=145)
ORR	55%	26%	46%	23%	37%	76%
mPFS	8.7	3.6	9.6	3.1	3	16.2

Standard of care Selpercatinib & Pralsetinib in 2nd line

	SELPERCATINIB	PRALSETINIB		
	[LIBRETTO-001]	[ARROW]		
ORR (%, N)				
Prior platinum-based chemotherapy	61% (n = 247)	59% (n = 136)		
Treatment-naïve	84% (n = 69)	72% (n = 75)		
DCR (%, N)				
Prior platinum-based chemotherapy	94% (n = 247)	90% (n = 136)		
Treatment-naïve	93% (n = 69)	91% (n = 75)		
mPFS (months, N)				
Prior platinum-based chemotherapy	24.9 (n = 247)	16.5 (n = 136)		
Treatment-naïve	22.0 (n = 69)	13.0 (n = 75)		
3y-OS (%, N)				
Prior platinum-based chemotherapy	58.5% (n = 247)	58% (n = 141)		
Treatment-naïve	57.1% (n = 69)	58% (n = 69)		
iORR (%, N)	85% (n = 26)	70% (n = 10)		
Grade ≥3 TRAEs (%, N)	38.6% (n = 796)	52% (n = 281)		
Discontinuation rate (%, N)	3% (n = 796)	7% (n = 281)		

Updated from Belluomini L et al, Expert Rev Anticancer Ther 2022; Drilon A et al, JCO 2022; Drilon A et al, JCO 2023; Griesinger F et al, Ann Oncol 2022; Murciano-Goroff Y et al, JTO 2023

Standard of care Selpercatinib & Pralsetinib in 2nd line

Pralsetinib 400 mg daily

Most common TRAEs

Neutropenia	46%
Leukopenia	38%
Increased ALT/AST	35%
Anemia	32%

Updated from Belluomini L et al, Expert Rev Anticancer Ther 2022; Drilon A et al, JCO 2022; Drilon A et al, JCO 2023; Griesinger F et al, Ann Oncol 2022; Murciano-Goroff Y et al, JTO 2023

Should we anticipate in 1st line RET TKIs?

Solomon B et al. Future Oncol 2021

Selpercatinib is the First Targeted Therapy to Demonstrate Superior Progression-Free Survival Compared to a PD-1 Inhibitor Plus Chemotherapy for Adults with Newly-Diagnosed Advanced or Metastatic RET Fusion-Positive Non-Small Cell Lung Cancer

LIBRETTO-431

- On-target: RET kinase domain mutations occur with a low frequency based on early data
- Off-target: Activation of bypass pathways including MAPK pathway reactivation and MET amplifications
- Multiple distinct mechanisms are often observed in the same patient (polyclonal resistance)

RET

Retrospective study, 16 institutions

105 biopsies from 89 patients progressing on selective RET TKI

Tuske biopy Liquid biopsy Uquid biopsy Used Arress Gain MET anp MET an

- Acquired RET mutations in 13% (G810X, 10%)
- Potential off target resistance alterations identified in 44% (MET amp, 12%)

RET

New RET TKIs that address solvent front mediated resistance

	RET Substitution Coverage						
Compound	V804X Gatekeeper	G810X Solvent Front	Other <i>RET</i> Mutation	VEGFR2	Other Non-RET Kinases	CNS?	Status
TPX-00461	Less potent	\checkmark	Y806N (hinge)	-	TRKA-C, SRC, FGFR1- 2, FLT3, JAK2	?	Phase I/II (NCT04161391)
LOXO-260 ²	\checkmark	\checkmark	G810S+V804M	-	TRKC (40x selectivity)	?	Phase I/II (NCT05241834)
Vepafestinib ^{3,4} (TAS0953/HM06)	\checkmark	\checkmark	Y806C/N	-		\checkmark	Phase I/II (NCT04683250)
EP0031 ⁵ (A400/KL590586)	\checkmark	\checkmark		-	JAK1/2 (10-22x selectivity)	\checkmark	Phase I/II (NCT05443126)
APS031186	\checkmark	\checkmark	Y806H	-		\checkmark	Phase I/II (NCT05653869)

> Combos? (+ MET inhibitors, i.e., capmatinib or cabozantinib)

Lin JL, WCLC 2023; Rosen EY et al, CCR 2020

Stakeholder cooperation in Rare molecular subtypes

Patient advocates, health-care agencies, investigators and companies with an interest in diagnostics, therapeutics and real-world evidence have already taken steps to surmount the challenges associated with research into low-frequency drivers

The value of National Platforms: ATLAS

https://biomarkersatlas.com/

Lo strumento innovativo a servizio della comunità degli esperti per la corretta definizione del valore clinico di ogni specifica mutazione

Conclusions BRAF, ROS1 & RET (& beyond)

Therapy \rightarrow optimize 1st line

Strategy \rightarrow address resistance (how to best sequence?)

Biology & heterogeneity \rightarrow dig deep into disease details

Congresso Nazionale sul carcinoma del polmone

CARCINOMA DEL POLMONE: QUALI NOVITÀ NEL 2023?

9 OTTOBRE 2023

VERONA Hotel Leon D'Oro

Responsabile scientifico STEFANIA GORI Sessione I NSCLC avanzato oncogene addicted

Il trattamento della malattia con alterazioni di BRAF, ROS1 & RET

